Understanding and Improving the Expressivity of Subgraph GNNs

Bohang Zhang

Peking University

June 23, 2023

Index

- Introduction
- Subgraph GNNs
- 3 A Complete Expressiveness Hierarchy for Subgraph GNNs
- 4 Localized (Folklore) Weisfeiler-Lehman Test
- 5 Strict Expressicity Separation Results
- 6 Experiments & Conclusion

Index

- Introduction
- Subgraph GNNs
- 3 A Complete Expressiveness Hierarchy for Subgraph GNN:
- 4 Localized (Folklore) Weisfeiler-Lehman Test
- 5 Strict Expressicity Separation Results
- 6 Experiments & Conclusion

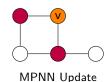
Introduction

• Graph neural networks (GNNs) have become the dominant approach for learning on graph-structured data.



Introduction

- The simplest GNNs are Message-passing neural networks (MPNNs): [Gilmer et al., 2017, Kipf and Welling, 2017, Hamilton et al., 2017, Veličković et al., 2018]:
 - Maintain a node feature h(v) for each node v;
 - $\begin{array}{l} \blacktriangleright \ \, \mathsf{Update:} \\ h^{(l)}(v) = \mathsf{UPDATE}^{(l)}\left(\frac{h^{(l-1)}(v)}{h},\mathsf{AGGR}^{(l)}\left(\{\!\!\{h^{(l-1)}(u):u\in\mathcal{N}_G(v)\}\!\!\}\right)\right) \end{array}$
 - Graph representation is obtained by pooling all node representations.



Introduction

- MPNNs:
 - ▶ Maintain a node feature h(v) for each node v;
 - ▶ Update: $h^{(l)}(v) = \mathsf{UPDATE}^{(l)}\left(h^{(l-1)}(v),\mathsf{AGGR}^{(l)}\left(\{\!\{h^{(l-1)}(u):u\in\mathcal{N}_G(v)\}\!\}\right)\right)$
 - ▶ Graph representation is obtained by pooling all node representations.
- Examples:
 - ► GCN [Kipf and Welling, 2017]:

$$m{h}_v^{(l)} = ext{ReLU}\left(m{W}\left(rac{1}{\mathcal{N}_G(v)+1}\sum_{u \in \mathcal{N}_G(v) \cup v}m{h}_u^{(l-1)}
ight) + m{b}
ight)$$

► GIN [Xu et al., 2019]:

$$m{h}_v^{(l)} = ext{MLP}\left((1+\epsilon)m{h}_v^{(l-1)} + \sum_{u \in \mathcal{N}_G(v)}m{h}_u^{(l-1)}
ight)$$

Limitations of MPNNs

- Cannot extract pair-wise relationship between nodes
 - ▶ Not applicable to link prediction tasks
- Limited expressive power in representing graph functions
 - ▶ MPNNs has inherent drawbacks in distinguishing topologically different graphs.

$$f\left(\bigcap\right) = y$$

Graph isomorphism

• Graph isomorphism problem: Given two graphs $G = (\mathcal{V}_G, \mathcal{E}_G)$ and $H = (\mathcal{V}_H, \mathcal{E}_H)$, determine if there is a bijective mapping $f : \mathcal{V}_G \to \mathcal{V}_H$, such that $\{u, v\} \in \mathcal{E}_G$ iff $\{f(u), f(v)\} \in \mathcal{E}_H$.

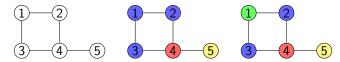
 Seminal work: Morris et al. [2019], Xu et al. [2019] first linked MPNN expressivity to an important algorithm called Weisfeiler-Lehman test [Weisfeiler and Leman, 1968].

The Classic Weisfeiler-Lehman Test

• Given a graph $G=(\mathcal{V},\mathcal{E})$, 1-WL computes a color mapping $\chi_G:\mathcal{V}_G\to\mathcal{C}$ by iteratively refining each node color using its neighboring node colors.

Algorithm 1: The 1-dimensional Weisfeiler-Lehman Algorithm

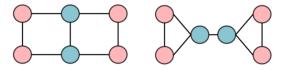
- 1 Initialize: $\chi^0_G(v) := c$ for all $v \in \mathcal{V}$ $(c \in \mathcal{C}$ is a fixed color)
- 2 for $t \leftarrow 1$ to T do
 - for each $v \in \mathcal{V}$ do
- 4 \bigcup \chi_G^t(v) := \text{hash}\left(\chi_G^{t-1}(v), \left\{\chi_G^{t-1}(u) : u \in \mathcal{N}_G(v)\right\}\right)
- 5 Return: χ_G^T
 - If $\{\!\{\chi_G(v):v\in\mathcal{V}_G\}\!\}\neq \{\!\{\chi_H(v):v\in\mathcal{V}_H\}\!\}$, then G is not isomorphic to H!



Example of 1-WL (Color refinement) iterations.

MPNNs are at Most as Expressive as 1-WL

- Whenever 1-WL fails to distinguish two non-isomorphic graphs, MPNNs also fail.
- Failure cases:



 It is a central problem to study how to design more expressive GNNs beyond the 1-WL test.

Higher-order GNNs

 A straightforward way is to leveraging higher-order WL variants to design provably more powerful GNNs [Morris et al., 2019, 2020, Maron et al., 2019, Geerts and Reutter, 2022].

- Given a graph $G=(\mathcal{V},\mathcal{E})$, k-FWL computes a color mapping $\chi_G:\mathcal{V}_G^k\to\mathcal{C}$ [Cai et al., 1992].
- If $\{\!\!\{\chi_G(v_1,\cdots,v_k)\!:\!v_1,\cdots,v_k\in\mathcal{V}_G\}\!\!\}\neq \{\!\!\{\chi_H(v_1,\cdots,v_k)\!:\!v_1,\cdots,v_k\in\mathcal{V}_H\}\!\!\}$, then G is not isomorphic to H!

Higher-order WL

Algorithm 2: The *k*-dimensional Folklore Weisfeiler-Lehman Algorithm

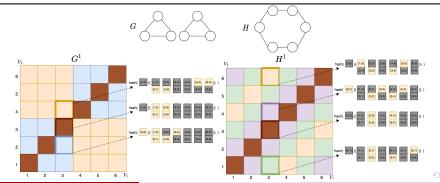
```
\begin{array}{ll} \textbf{1 Initialize:} \ \chi_G^0(v_1,\cdots,v_k) := \mathsf{hash}(\mathbf{A}[(v_1,\cdots,v_k)]) \ \text{for all} \ v_1,\cdots,v_k \in \mathcal{V}_G \\ \textbf{2 for} \ t \leftarrow 1 \ \textbf{to} \ T \ \textbf{do} \\ \textbf{3} & | & \mathsf{for each} \ v_1,\cdots,v_k \in \mathcal{V} \ \textbf{do} \\ & | & \chi_G^t(v_1,\cdots,v_k) := \mathsf{hash} \left(\chi_G^{t-1}(v_1,\cdots,v_k), \right. \\ & | & \{ (\chi_G^{t-1}(u,v_2,\cdots,v_k), \\ \chi_G^{t-1}(v_1,u,\cdots,v_k), \\ \dots, \\ & | & \chi_G^{t-1}(v_1,v_1,\cdots,v_k) \} \end{array}
```

5 Return: χ_G^T

2-FWL

Algorithm 3: The 2-dimensional Folklore Weisfeiler-Lehman Algorithm

- 1 Initialize: $\chi^0_G(u,v):=(\mathbb{I}[u=v], {\color{red}A[u,v]})$ for all $u,v\in\mathcal{V}_G$
- $\mathbf{2} \ \, \mathbf{for} \ \, t \leftarrow 1 \ \, \mathbf{to} \ \, T \ \, \mathbf{do}$
- for each $u, v \in \mathcal{V}$ do
- 5 Return: χ_G^T



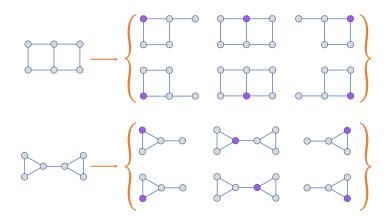
Limitation of Higher-order GNNs

- However, higher-order GNNs suffer from several severe limitations:
 - High computation/memory costs
 - Coarse bound between 1-WL and 3-WL [Morris et al., 2022]
 - Unclear about necessity for real-world tasks
- Fundamental question: How can we design simpler, more efficient, expressive, and practical GNN architectures?

Index

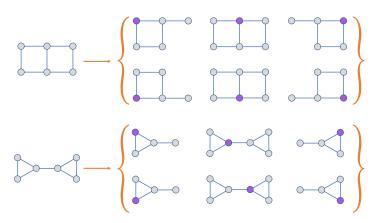
- Introduction
- Subgraph GNNs
- 3 A Complete Expressiveness Hierarchy for Subgraph GNN:
- 4 Localized (Folklore) Weisfeiler-Lehman Test
- 5 Strict Expressicity Separation Results
- Experiments & Conclusion

Subgraph GNNs



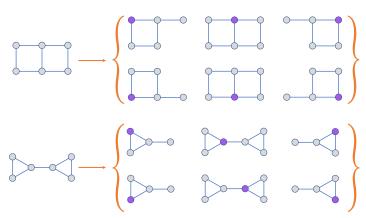
- Graphs indistinguishable by MPNNs can be easily distinguished via subgraphs.
- Idea: transform a graph into a collection of subgraphs for better expressivity!

Vanilla Subgraph GNN



- Extract k-hop ego networks for each node
- Perform MPNNs for each k-hop ego network
- Aggregate representations across all subgraphs

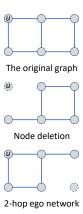
General Design Space of Subgraph GNNs



- Key question:
 - How can we transform a graph into subgraphs?
 - How can we design equivariant GNNs to process a collection of subgraphs?

Subgraph Generation Policies

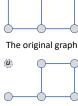
- We consider node-based subgraph generation policies: each subgraph is associated to a specific node of the original graph [Frasca et al., 2022].
- Commonly-used policies:
 - Note deletion [Cotta et al., 2021];
 - k-hop ego network [Zhang and Li, 2021, You et al., 2021, Zhao et al., 2022, Bevilacqua et al., 2022];
 - ► The original graph.



Subgraph Generation Policies

 We consider node-based subgraph generation policies: each subgraph is associated to a specific node of the original graph [Frasca et al., 2022].

- Commonly-used policies:
 - ▶ Note deletion [Cotta et al., 2021];
 - k-hop ego network [Zhang and Li, 2021, You et al., 2021, Zhao et al., 2022, Bevilacqua et al., 2022];
 - ► The original graph.
- Feature initialization:
 - Constant:
 - ▶ Node marking [Qian et al., 2022];
 - ► Distance encoding [Zhang and Li, 2021, Zhao et al., 2022].



2-hop ego network

Constant

Node marking

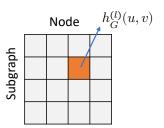
Distance Encoding

• Example: k-hop ego network + distance encoding.

4 D > 4 A > 4 B > 4 B >

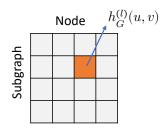
Equivariant Message-passing Scheme

- How to design equivariant layer for a collection of subgraphs?
- Idea: treat all nodes features in all subgraphs as a 2D square matrix!



Equivariant Message-passing Scheme

- How to design equivariant layer for a collection of subgraphs?
- Idea: treat all nodes features in all subgraphs as a 2D square matrix!
- Following Frasca et al. [2022], we study the following general design space:

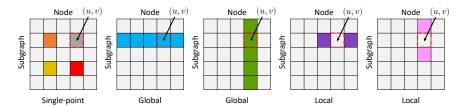


$$h_G^{(l+1)}(u, v) = \mathsf{MERGE}^{(l+1)}(\mathsf{AGGR}_1(u, v, G, h_G^{(l)}), \cdots, \mathsf{AGGR}_r(u, v, G, h_G^{(l)}))$$

- Each atomic operation $AGGR_i(u, v, G, h)$ takes any of the following form:
 - ► Single-point: h(u, v), h(v, u), h(u, u), or h(v, v);
 - $\qquad \qquad \mathsf{Global:}\ \, \sum_{w \in \mathcal{V}_G} h(u,w) \ \, \mathsf{or} \ \, \sum_{w \in \mathcal{V}_G} h(w,v);$
 - $\qquad \qquad \mathbf{Local:} \ \, \sum_{w \in \mathcal{N}_{G^u}(v)} h(u,w) \ \, \text{or} \ \, \sum_{w \in \mathcal{N}_{G^v}(u)} h(w,v).$

Equivariant Message-passing Scheme

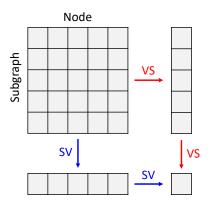
- Each atomic operation $AGGR_i(u, v, G, h)$ takes any of the following form:
 - ► Single-point: h(u, v), h(v, u), h(u, u), or h(v, v);
 - $\qquad \qquad \textbf{Global: } \sum_{w \in \mathcal{V}_G} h(u,w) \text{ or } \sum_{w \in \mathcal{V}_G} h(w,v);$
 - $\blacktriangleright \ \, \mathsf{Local:} \ \, \sum_{w \in \mathcal{N}_{G^u}(v)} h(u,w) \ \mathsf{or} \ \, \sum_{w \in \mathcal{N}_{G^v}(u)} h(w,v).$



• Examples: Vanilla subgraph GNNs, ESAN [Bevilacqua et al., 2022], GNN-AK [Zhao et al., 2022], SUN [Frasca et al., 2022].

Pooling Paradigm

- How to compute a graph representation based on these subgraph node features?
- Vertex-subgraph (VS) pooling v.s. Subgraph-vertex (SV) pooling:



 As in previous slides, there are a huge number of combinatorial ways to design subgraph GNNs.

- As in previous slides, there are a huge number of combinatorial ways to design subgraph GNNs.
- Problem 1: How do various design paradigms differ in expressiveness?
 - ► Related to a series of open questions [Bevilacqua et al., 2022, Frasca et al., 2022, Qian et al., 2022, Zhao et al., 2022]

- As in previous slides, there are a huge number of combinatorial ways to design subgraph GNNs.
- Problem 1: How do various design paradigms differ in expressiveness?
 - Related to a series of open questions [Bevilacqua et al., 2022, Frasca et al., 2022, Qian et al., 2022, Zhao et al., 2022]
- Problem 2: What design principle achieves the maximal expressiveness with the least architectural complexity?
 - ▶ Important for the practical design of subgraph GNNs

- As in previous slides, there are a huge number of combinatorial ways to design subgraph GNNs.
- Problem 1: How do various design paradigms differ in expressiveness?
 - Related to a series of open questions [Bevilacqua et al., 2022, Frasca et al., 2022, Qian et al., 2022, Zhao et al., 2022]
- Problem 2: What design principle achieves the maximal expressiveness with the least architectural complexity?
 - Important for the practical design of subgraph GNNs
- Problem 3: Limitation of the subgraph GNN model class: Can we give a tight expressivity upper bound for all subgraph GNNs?
 - ► Frasca et al. [2022] recently bounded subgraph GNNs to be 2-FWL.
 - ▶ Whether an inherent gap exists remains a central open problem.

Index

- Introduction
- 2 Subgraph GNNs
- 3 A Complete Expressiveness Hierarchy for Subgraph GNNs
- 4 Localized (Folklore) Weisfeiler-Lehman Test
- 5 Strict Expressicity Separation Results
- 6 Experiments & Conclusion

Subgraph Weisfeiler-Lehman Test (SWL)

- Maintain a color for each subgraph-node pair (u, v).
- ullet Initially, the color $\chi^0_G(u,v)$ is determined by the subgraph generation policy.
- Iteration:

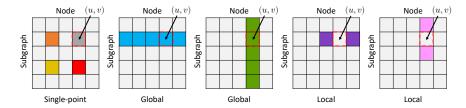
$$\chi_G^{(t+1)}(u,v) = \mathsf{hash}(\mathsf{agg}_1(u,v,G,\chi_G^{(t)}),\cdots,\mathsf{agg}_r(u,v,G,\chi_G^{(t)})).$$

Each $agg_i(u, v, G, \chi)$ can take any of the following expressions:

- ▶ Single-point: $\chi(u, v)$, $\chi(v, u)$, $\chi(u, u)$, or $\chi(v, v)$;
- ▶ Global: $\{\!\{\chi(u, w) : w \in \mathcal{V}_G\}\!\}$ or $\{\!\{\chi(w, v) : w \in \mathcal{V}_G\}\!\}$.
- ▶ Local: $\{\!\!\{\chi(u,w):w\in\mathcal{N}_{G^u}(v)\}\!\!\}$ or $\{\!\!\{\chi(w,v):w\in\mathcal{N}_{G^v}(u)\}\!\!\}$.

Subgraph Weisfeiler-Lehman Test (SWL)

• Symbols for the 8 atomic aggregations: agg_{uv}^{P} , agg_{vu}^{P} , agg_{uv}^{P} , agg_{uv}^{Q} , agg_{uv}^{L} , agg



- Denote the stable color of (u, v) as $\chi_G(u, v)$.
 - ▶ VS pooling: $c(G) = \text{hash}(\{\{\{\{\chi_G(u,v): v \in \mathcal{V}_G\}\}\}): u \in \mathcal{V}_G\}\});$
 - ▶ SV pooling: $c(G) = \text{hash}(\{\{\chi_G(u, v) : u \in \mathcal{V}_G\}\}) : v \in \mathcal{V}_G\}\})$.

Equivalence between Subgraph GNNs and SWL

Proposition (informal)

SWL is as powerful as Subgraph GNNs in distinguishing non-isomorphic graphs when matching the subgraph generation policy, the aggregation scheme, and the pooling paradigm.

Equivalence between Subgraph GNNs and SWL

Proposition (informal)

SWL is as powerful as Subgraph GNNs in distinguishing non-isomorphic graphs when matching the subgraph generation policy, the aggregation scheme, and the pooling paradigm.

- Notations for "powerful":
 - ▶ $A_1 \leq A_2$: A_2 is more powerful than A_1 ;
 - ▶ $A_1 \prec A_2$: A_2 is strictly more powerful than A_1 ;
 - ▶ $A_1 \simeq A_2$: A_2 is as powerful as A_1 ;
 - ▶ $A_1 \nsim A_2$: A_2 is incomparable to A_1 .

The canonical form: node marking SWL

- Subgraph generation policy is the trickiest part in SWL.
- Surprisingly, the simple node marking policy (on the original graph) achieves the maximal power among other policies! (see also [Qian et al., 2022, Huang et al., 2023])
- Insight: when the special node mark is propagated
 - lacktriangle the color of each node pair (u,v) can encode its distance $\mathrm{dis}_G(u,v)$
 - the structure of k-hop ego network is also encoded

The canonical form: node marking SWL

- Subgraph generation policy is the trickiest part in SWL.
- Surprisingly, the simple node marking policy (on the original graph) achieves the maximal power among other policies! (see also [Qian et al., 2022, Huang et al., 2023])
- Insight: when the special node mark is propagated
 - the color of each node pair (u, v) can encode its distance $\operatorname{dis}_G(u, v)$
 - the structure of k-hop ego network is also encoded
- \bullet Notation: SWL(\$\mathcal{A}\$, Pool) denotes node marking SWL with aggregation scheme

$$\mathcal{A} \subset \{\mathsf{agg}^\mathsf{P}_\mathsf{uu}, \mathsf{agg}^\mathsf{P}_\mathsf{vv}, \mathsf{agg}^\mathsf{P}_\mathsf{vu}, \mathsf{agg}^\mathsf{G}_\mathsf{u}, \mathsf{agg}^\mathsf{G}_\mathsf{v}, \mathsf{agg}^\mathsf{L}_\mathsf{u}, \mathsf{agg}^\mathsf{L}_\mathsf{v}\}$$

and pooling paradigm $\mathsf{Pool} \in \{\mathsf{VS},\mathsf{SV}\}.$ We omit explicitly writing $\mathsf{agg}^\mathsf{P}_\mathsf{uv}.$

4□ > 4□ > 4□ > 4 = > 4 = > 9 < ○</p>

Analyzing Aggregation Schemes

Theorem

For any A and Pool, the following hold:

- $SWL(A \cup \{agg_u^G\}, Pool) \leq SWL(A \cup \{agg_u^L\}, Pool)$ and $SWL(A \cup \{agg_u^L\}, Pool) \simeq SWL(A \cup \{agg_u^L, agg_u^G\}, Pool)$;
- $\begin{array}{l} \bullet \; \mathsf{SWL}(\mathcal{A} \cup \{\mathsf{agg}^P_{uu}\}, \mathsf{Pool}) \preceq \mathsf{SWL}(\mathcal{A} \cup \{\mathsf{agg}^G_{u}\}, \mathsf{Pool}) \; \mathsf{and} \\ \mathsf{SWL}(\mathcal{A} \cup \{\mathsf{agg}^G_{u}\}, \mathsf{Pool}) \simeq \mathsf{SWL}(\mathcal{A} \cup \{\mathsf{agg}^G_{u}, \mathsf{agg}^P_{uu}\}, \mathsf{Pool}); \end{array}$
- $$\begin{split} \bullet \ \ \mathsf{SWL}(\{\mathsf{agg}^\mathsf{L}_\mathsf{u}, \mathsf{agg}^\mathsf{P}_\mathsf{vu}\}, \mathsf{Pool}) &\simeq \mathsf{SWL}(\{\mathsf{agg}^\mathsf{L}_\mathsf{u}, \mathsf{agg}^\mathsf{L}_\mathsf{v}\}, \mathsf{Pool}) \simeq \\ \mathsf{SWL}(\{\mathsf{agg}^\mathsf{L}_\mathsf{u}, \mathsf{agg}^\mathsf{L}_\mathsf{v}, \mathsf{agg}^\mathsf{P}_\mathsf{vu}\}, \mathsf{Pool}). \end{split}$$
- Implication:
 - ► Local aggregation is more powerful than global aggregation;
 - ► Global aggregation is more powerful than single-point aggregation;
 - ► The "transpose" aggregation agg^P_{vu} combined with one local aggregation can express the other local aggregation.

Analyzing Pooling Paradigms

Theorem

Let $agg_u^L \in \mathcal{A}$. Then,

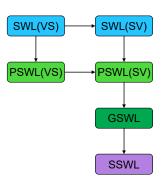
- $SWL(A, VS) \leq SWL(A, SV)$;
- If $\{agg_v^G, agg_v^L\} \cap \mathcal{A} \neq \emptyset$, then $SWL(\mathcal{A}, \frac{VS}{}) \simeq SWL(\mathcal{A}, \frac{SV}{})$.
- SV pooling is more powerful than VS pooling, especially when the aggregation scheme is weak (e.g, the vanilla SWL).
- SV pooling is as powerful as VS pooling for SWL with strong aggregation schemes.

SWL Hierarchy

Corollary

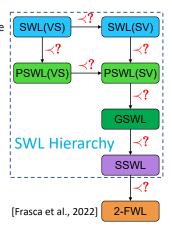
Any $SWL(\mathcal{A}, Pool)$ must be as expressive as one of the 6 SWL algorithms:

- (Vanilla SWL) $SWL(VS) := SWL(\{agg_{\mu}^{L}\}, VS),$ $SWL(SV) := SWL(\{agg_{\mu}^{L}\}, SV);$
- (SWL with additional single-point aggregation) $PSWL(VS) := SWL(\{agg_{u}^{L}, agg_{vv}^{P}\}, VS),$ $PSWL(SV) := SWL(\{agg_{u}^{L}, agg_{vv}^{P}\}, SV);$
- (SWL with additional global aggregation) $GSWL := SWL(\{agg_{..}^{L}, agg_{..}^{G}\}, VS);$
- (Symmetrized SWL) $SSWL := SWL(\{agg_u^L, agg_v^L\}, VS).$



What's Next?

- Strict separation of different equivalence classes?
- Expressivity upper bound?
 - All SWL algorithms have O(nm) complexity for a graph with n nodes and m edges
 - ▶ 2-FWL requires $O(n^3)$ complexity
- Does SWL achieve the maximal expressiveness among all CR algorithms with O(nm) complexity?



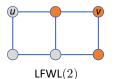
Index

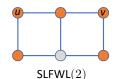
- Introduction
- Subgraph GNNs
- 3 A Complete Expressiveness Hierarchy for Subgraph GNNs
- 4 Localized (Folklore) Weisfeiler-Lehman Test
- 5 Strict Expressicity Separation Results
- Experiments & Conclusion

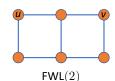
Localized Folklore WL Tests

- 2-FWL iteration:
 - $\blacktriangleright \ \chi_G^{(t+1)}(u,v) = \mathsf{hash}\left(\chi_G^{(t)}(u,v), \{\!\!\{(\chi_G^{(t)}(u,w),\chi_G^{(t)}(w,v))\!:\! w \in \mathcal{V}_G\}\!\!\}\right)$
- Can we develop an "efficient" version of 2-FWL to improve the $O(n^3)$ complexity? (similar to the idea in Morris et al. [2020])
- Localized 2-FWL iteration:

$$\blacktriangleright \ \chi_G^{(t+1)}(u,v) = \mathsf{hash}\left(\chi_G^{(t)}(u,v), \{\!\!\{(\chi_G^{(t)}(u,w),\chi_G^{(t)}(w,v))\!: w \in \mathcal{N}_G^1(v)\!\!\}\!\!\}\right)$$





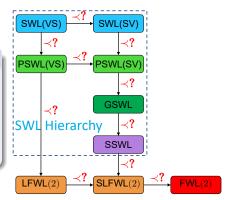


4 D > 4 P > 4 B > 4 B > B 9 Q Q

Localized Folklore WL Tests

Theorem

- LFWL(2) \leq SLFWL(2) \leq FWL(2);
- PSWL(VS) ≤ LFWL(2);
- SSWL ≤ SLFWL(2) (improving Frasca et al. [2022]).



Localized WL Tests

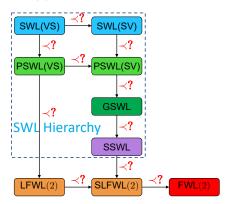
- Another highly related algorithm is the localized 2-WL test [Morris et al., 2020]:
 - $\begin{array}{l} \blacktriangleright \ \chi_G^{(t+1)}(u,v) = \\ & \text{hash} \left(\chi_G^{(t)}(u,v), \{\!\!\{ \chi_G^{(t)}(u,w) \!:\! w \in \mathcal{N}_G(v) \}\!\!\}, \{\!\!\{ \chi_G^{(t)}(w,v) \!:\! w \in \mathcal{N}_G(u) \}\!\!\} \right) \end{array}$

Theorem

- LFWL(2) \leq SLFWL(2) \leq FWL(2);
- $PSWL(VS) \leq LFWL(2)$;
- SSWL ≤ SLFWL(2) (improving Frasca et al. [2022]);
- SSWL \simeq LWL(2).

Open Questions

- Gap between 2-FWL and localized variants?
- Gap between localized FWL and localized WL?
- Gap between SLFWL(2) and subgraph GNNs?



Index

- Introduction
- Subgraph GNNs
- 3 A Complete Expressiveness Hierarchy for Subgraph GNNs
- 4 Localized (Folklore) Weisfeiler-Lehman Test
- 5 Strict Expressicity Separation Results
- Experiments & Conclusion

A Unified Pebbling Game Framework

- To prove strict separation results, we develop an analyzing framework based on pebbling games [Cai et al., 1992].
- Pebbling game:
 - Two players: Spoiler and Duplicator;
 - ► Two graphs: G and H (with the same number of nodes).
 - ► Each graph is equipped with two pebbles: *u* and *v*.
 - Initially, pebbles are outside the graphs.

Subgraph Pebbling Game (Initialization)

- For VS pooling:
 - **1** Duplicator chooses an arbitrary bijection $f: \mathcal{V}_G \to \mathcal{V}_H$.
 - ② Spoiler picks pebbles u of the two graphs on arbitrary $x \in \mathcal{V}_G$ and $f(x) \in \mathcal{V}_H$, respectively.
 - **3** Duplicator chooses another arbitrary bijection $g: \mathcal{V}_G \to \mathcal{V}_H$.
 - **③** Spoiler picks pebbles v of the two graphs on arbitrary $y \in \mathcal{V}_G$ and $g(y) \in \mathcal{V}_H$, respectively.
- ullet For SV pooling: first pick pebbles v and then pebbles u.

Subgraph Pebbling Game (Iteration)

- For each iteration:
 - lacktriangle Spoiler selects an aggregation agg $\in \mathcal{A}$
 - For agg_{uu}^{P} , move pebble v to the position of pebble u for both graph
 - For agg_{vu}^{P} , swap pebble v with u for both graph
 - ► For agg^G:
 - ① Duplicator chooses an arbitrary bijection $g: \mathcal{V}_G \to \mathcal{V}_H$.
 - ② Spoiler chooses on arbitrary $x \in \mathcal{V}_G$ and the corresponding $g(x) \in \mathcal{V}_H$, and moves pebbles v of the two graphs to x and g(x), respectively.
 - ► For agg^L:
 - ① Duplicator chooses an arbitrary bijection $g: \mathcal{N}_G(v) \to \mathcal{N}_H(v)$ (losing the game if $|\mathcal{N}_G(v)| \neq \mathcal{N}_H(v)$).
 - ② Spoiler chooses on arbitrary $x \in \mathcal{N}_G(v)$ and the corresponding $g(x) \in \mathcal{N}_H(v)$, and moves pebbles v of the two graphs to x and g(x), respectively.
 - ► Similar for agg_v, agg_v, and agg_v.

Subgraph Pebbling Game (Winning Judgement)

ullet After each iteration, Spoiler wins if the isomorphism type of u,v differs in G and H.

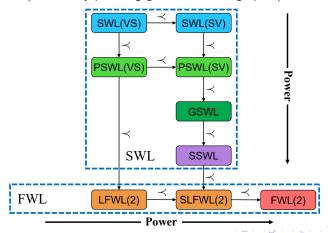
Theorem

Any node marking SWL algorithm can distinguish a pair of graphs ${\it G}$ and ${\it H}$ if and only if Spoiler can win the corresponding pebbling game on ${\it G}$ and ${\it H}$.

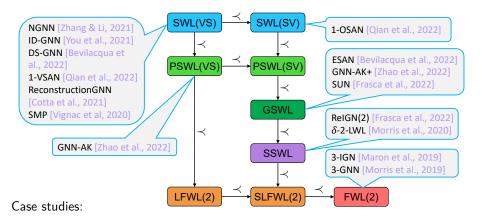
• What about localized FWL?

Strict Sepration Results

- All relations " \leq " in previous slides can be replaced by \prec !
- Proofs are based on skillfully constructing non-trivial counterexample graphs
 [Fürer, 2001] and study pebbling games on these graphs [Cai et al., 1992].

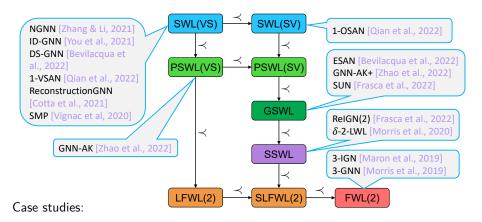


Discussions with Prior Works



- DS-GNN v.s. DSS-GNN [Bevilacqua et al., 2022]
- GNN-AK v.s. GNN-AK-ctx [Zhao et al., 2022]
- OSAN v.s. VSAN [Qian et al., 2022]

Discussions with Prior Works



- RelGN(2) v.s. SUN [Frasca et al., 2022]
- ReIGN(2) v.s. 3-WL [Frasca et al., 2022]
- RelGN(2) v.s. δ -2-LWL [Frasca et al., 2022, Morris et al., 2020]

Index

- Introduction
- 2 Subgraph GNNs
- 3 A Complete Expressiveness Hierarchy for Subgraph GNNs
- 4 Localized (Folklore) Weisfeiler-Lehman Test
- 5 Strict Expressicity Separation Results
- 6 Experiments & Conclusion

Experiments on Counting Substructures

- We adopt the elegant SSWL-based subgraph GNN design principle.
- Two models:

 - $\begin{array}{l} \blacktriangleright \ \, \mathsf{GNN}\text{-}\mathsf{SSWL}\colon \mathsf{SWL}(\mathsf{agg}^\mathsf{L}_\mathsf{u},\mathsf{agg}^\mathsf{L}_\mathsf{v}) \\ \blacktriangleright \ \, \mathsf{GNN}\text{-}\mathsf{SSWL}+\colon \mathsf{SWL}(\mathsf{agg}^\mathsf{L}_\mathsf{u},\mathsf{agg}^\mathsf{L}_\mathsf{v},\mathsf{agg}^\mathsf{P}_\mathsf{w}) \end{array}$

Performance comparison of different subgraph GNNs on ZINC benchmark.

Model	Reference	Triangle	Tailed Tri.	Star	4-Cycle	5-Cycle	6-Cycle
PPGN	Maron et al. [2019]	0.0089	0.0096	0.0148	0.0090	0.0137	0.0167
GNN-AK	Zhao et al. [2022]	0.0934	0.0751	0.0168	0.0726	0.1102	0.1063
GNN-AK+	Zhao et al. [2022]	0.0123	0.0112	0.0150	0.0126	0.0268	0.0584
SUN (EGO+)	Frasca et al. [2022]	0.0079	0.0080	0.0064	0.0105	0.0170	0.0550
GNN-SSWL	This paper	0.0098	0.0090	0.0089	0.0107	0.0142	0.0189
GNN-SSWL+	This paper	0.0064	0.0067	0.0078	0.0079	0.0108	0.0154

Experiments on ZINC

- We adopt the elegant SSWL-based subgraph GNN design principle.
- Two models:

► GNN-SSWL: SWL(agg^L_u, agg^L_v) ► GNN-SSWL+: SWL(agg^L_u, agg^P_{vv})

Performance comparison of different subgraph GNNs on ZINC benchmark.

Model	Reference	WL	#	#	ZINC Test MAE		
	Reference		Param.	Agg.	Subset	Full	
GSN	Bouritsas et al. [2022]	-	\sim 500k	-	0.101±0.010	-	
CIN (small)	Bodnar et al. [2021]	-	\sim 100k	-	0.094 ± 0.004	0.044 ± 0.003	
NGNN	Zhang and Li [2021]	SWL(VS)	\sim 500k	2	0.111±0.003	0.029 ± 0.001	
GNN-AK	Zhao et al. [2022]	PSWL(VS)	\sim 500k	4	0.105 ± 0.010	-	
GNN-AK-ctx	Zhao et al. [2022]	GSWL	\sim 500k	5	0.093 ± 0.002	-	
ESAN	Bevilacqua et al. [2022]	GSWL	\sim 100k	4	0.102 ± 0.003	0.029 ± 0.003	
ESAN	Frasca et al. [2022]	GSWL	446k	4	0.097±0.006	0.025 ± 0.003	
SUN	Frasca et al. [2022]	GSWL	526k	12	0.083±0.003	0.024 ± 0.003	
GNN-SSWL	This paper	SSWL	274k	3	0.082±0.003	0.026 ± 0.001	
GNN-SSWL+	This paper	SSWL	387k	4	0.070±0.005	0.022 ± 0.002	

June 23, 2023

Take Aways

- Different subgraph GNN design approaches vary significantly in their expressive power and also the practical ability to encode fundamental graph properties.
- Subgraphs GNNs is highly related localized Folkfore WL test.
- There is an inherent gap between subgraph GNNs and 2-FWL.

Open Directions

- Expressiveness hierarchy of higher-order subgraph GNNs
- Edge-based subgraph GNNs
- Localized FWL
- Practical expressiveness of GSWL and SSWL

Paper can be found at arxiv 2302.07090 or at ICML 2023 (https://openreview.net/forum?id=2Hp7U3k5Ph)

Joint work with Guhao Feng, Yiheng Du, Di He, and Liwei Wang

References I

- Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation networks. In *International Conference on Learning Representations*, 2022.
- Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montufar, and Michael M. Bronstein. Weisfeiler and lehman go cellular: CW networks. In *Advances in Neural Information Processing Systems*, volume 34, 2021.
- Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving graph neural network expressivity via subgraph isomorphism counting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2022.
- Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph identification. *Combinatorica*, 12(4):389–410, 1992.

References II

- Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph representations. In *Advances in Neural Information Processing Systems*, volume 34, pages 1713–1726, 2021.
- Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and extending subgraph gnns by rethinking their symmetries. *ArXiv*, abs/2206.11140, 2022.
- Martin Fürer. Weisfeiler-lehman refinement requires at least a linear number of iterations. In *International Colloquium on Automata, Languages, and Programming*, pages 322–333. Springer, 2001.
- Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural networks. In *International Conference on Learning Representations*, 2022.
- Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for quantum chemistry. In *International conference on machine learning*, pages 1263–1272. PMLR, 2017.

References III

- William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In *Proceedings of the 31st International Conference on Neural Information Processing Systems*, volume 30, pages 1025–1035, 2017.
- Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power of graph neural networks with i\$^2\$-GNNs. In *The Eleventh International Conference on Learning Representations*, 2023.
- Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In *International Conference on Learning Representations*, 2017.
- Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks. In *Advances in neural information processing systems*, volume 32, pages 2156–2167, 2019.
- Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pages 4602–4609, 2019.

References IV

- Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: towards scalable higher-order graph embeddings. In *Proceedings of the 34th International Conference on Neural Information Processing Systems*, pages 21824–21840, 2020.
- Christopher Morris, Gaurav Rattan, Sandra Kiefer, and Siamak Ravanbakhsh. Speqnets: Sparsity-aware permutation-equivariant graph networks. In *International Conference on Machine Learning*, pages 16017–16042. PMLR, 2022.
- Chendi Qian, Gaurav Rattan, Floris Geerts, Christopher Morris, and Mathias Niepert. Ordered subgraph aggregation networks. *arXiv preprint* arXiv:2206.11168, 2022.
- Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks. In *International Conference on Learning Representations*, 2018.
- Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra which appears therein. *NTI*, *Series*, 2(9):12–16, 1968.

June 23, 2023

References V

- Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In *International Conference on Learning Representations*, 2019.
- Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pages 10737–10745, 2021.
- Muhan Zhang and Pan Li. Nested graph neural networks. In *Advances in Neural Information Processing Systems*, volume 34, pages 15734–15747, 2021.
- Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn with local structure awareness. In *International Conference on Learning Representations*, 2022.

Thank You!

