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Introduction

Introduction

Modern neural networks are vulnerable to adversarial perturbations of inputs.

A large body of papers have been focusing on training networks with certified
robustness guarantees.

▶ We say a classifier g is certifiably robust for input x under perturbation level ϵ,
if for any x′ satisfying ∥x − x′∥ < ϵ, one can prove that g(x) = g(x′).
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Introduction

How to Achieve Certified Robustness?

Key question: how to prove the robustness of a classifier?

For neural networks, typically g(x) = arg max
i

[f(x)]i where f : Rd → RK is a
real-valued mapping.

In this case, the Lipschitz property of f is strongly relevant to certified
robustness!

▶ A mapping f is said to be L-Lipschitz continuous with respect to norm ∥ · ∥, if
for any pair of inputs x1, x2 ∈ Rn, ∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥.

▶ Intuitively, Lipschitz property says that the change of network output can be
bounded by the change of input.
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Introduction

Certified Robustness of Lipschitz networks

Designing Lipschitz networks serves as a promising way to obtain certified
robustness.

Theorem (Certified Robustness of Lipschitz networks)
For a neural network f with Lipschitz constant L under ℓp-norm ∥ · ∥p, define the
resulting classifier g as g(x) := arg max

k
[f(x)]k. Then g is provably robust under

perturbations levels
ϵ =

C margin(f(x))
L ,

where C =
p√
2/2 is a universal constant and margin(f(x)) is the margin between

the largest and second largest output logits.
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Introduction

Has everything been settled?

It seems that as long as one trains a Lipschitz-constrained neural network to
fit a dataset, its robustness is automatically guaranteed.

However, the key difficulty is how to constrain the Lipschitz constant while
achieving a large margin on the dataset.

▶ Example: what happens if one rescales the final output of a neural network by
dividing a constant K? (the Lipschitz constant, margin, and robustness?)

We will show that given a network architecture, the margin may be
intrinsically limited to a vanishingly small value, regardless of how network
parameters are learned.

This corresponds to a fundamental problem, namely the expressive power of
Lipchitz neural networks, which is the central topic in this talk.
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Lipschitz Neural Networks and Gradient Preservation Problem

Standard Lipschitz Networks

The most natural way to build Lipschitz neural networks is to stacking
Lipschitz layers.

▶ Lipschitzness is closed under function composition: If g and h are both
1-Lipschitz, then g ◦ h is also 1-Lipschitz.

Building 1-Lipschitz layers:
▶ Consider a standard neural network layer: h(x) = σ(Wx + b), where σ is an

elementwise activation.
▶ To make h Lipschitz with respect to ℓp-norm, it suffices to constrain

∥W∥p ≤ 1 plus using 1-Lipschitz function σ, e.g., ReLU.
▶ We call the resulting network a standard Lipschitz network.
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Lipschitz Neural Networks and Gradient Preservation Problem

Gradient Preservation Problem in Standard Lipschitz
Networks

A basic fact of 1-Lipschitz neural network is that its gradient is bounded.

Formally, if g is 1-Lipschitz w.r.t. ℓp-norm, then ∥∇g(x)∥q ≤ 1 holds for any
x, where 1

p +
1

q = 1.

▶ Remark: For non-differentiable point x, ∇g(x) can be replaced by any
generalized gradient.

What happens if ∥∇g(x)∥q = 1 for almost all x?

Theorem (Anil et al. [2])
Let g be a standard Lipschitz netwotk w.r.t. ℓp-norm with monotonic activation.
If ∥∇g(x)∥q = 1 almost everywhere, then g is linear.
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Lipschitz Neural Networks and Gradient Preservation Problem

Why Does This Happen?

Proof sketch: the theorem holds mainly because of the contraction property
of Lipschitz networks.

▶ If ∥∇g(x)∥q = 1 almost everywhere, then for each layer h(x) = σ(Wx + b), it
Jacobian must satisfy ∥∇h(x)∥q = 1 almost everywhere.

▶ It suffices to prove that σ is linear for all Wx + b.
▶ Otherwise, since σ is monotonic and non-linear, there is some region such that

|σ′(z)| < 1. This will yield a contradiction because now ∥∇h(x)∥q < 1 for
some x (using Holder’s inequality).
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Lipschitz Neural Networks and Gradient Preservation Problem

Discussions and Weaknesses

Discussions:
▶ Standard Lipschitz networks cannot precisely fit the absolute value function.
▶ Transfers to the certified robustness setting: standard Lipschitz networks

cannot achieve optimal robust radius on the following dataset:
D = {(−1, 0), (0, 1), (1, 0)}.

Weaknesses:
▶ Does not give quantitative error bound or robust radius. (Note the words

”cannot precisely fit” and ”cannot achieve optimal robust radius”)
▶ Heavily relies on the assumption that the activation is monotonic (e.g., ReLU

or sigmoid).
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Lipschitz Neural Networks and Gradient Preservation Problem

GroupSort Networks

Anil et al. [2] attributed the reason to the activation function, because any
monontonic non-linear 1-Lipschitz activation is not gradient-norm preserving
(GNP).

They thus proposed a new activation, called the GroupSort:
▶ It replaces the element-wise activation σ with a GroupSort layer.
▶ GroupSort partitions the input vector into groups, sorts the sub-vector of each

group in descending order, and finally concatenates the resulting sub-vectors.

Special case (MaxMin): when group size is 2, calculating the maximum and
minimum of the input vector pair by pair.

▶ Example: let x = (1, 4, 3, 2, 5, 6), then GroupSort(x) = (4, 1, 3, 2, 6, 5).

GroupSort activation is gradient-norm preserving (GNP).

Bohang Zhang (Peking University) Expressive Power of Lipschitz Neural Networks December 15, 2022 13 / 43



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Lipschitz Neural Networks and Gradient Preservation Problem

Lipschitz-Universal Function Approxiamation

Theorem
Let g be a any 1-Lipschitz function w.r.t. ℓ∞-norm, defined on a compact domain
K. For any ϵ > 0 and any group size G ≥ 2, there exists a GroupSort network g̃
such that |g(x)− g̃(x)| ≤ ϵ holds for any x ∈ K.

Discussion of the group size:
▶ a GroupSort layer with larger G can trivially express that with small G;
▶ Conversely, stacking M layers with group size G can express a GroupSort layer

with group size GM.
▶ Therefore, in practice one typically use G = 2, which avoids the

computationally expensive sorting operations.
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Lipschitz Neural Networks and Gradient Preservation Problem

Discussions and Problems

Discussion with element-wise activation function:
▶ For the ℓ2-norm case, MaxMin is equivalent to the absolute value activation:

|x| = 1√
2

(
max

(
x√
2
, 0

)
+ min

(
x√
2
, 0

))
max(x, 0) = 1√

2

(
|x|√
2
+

|x|√
2

)
▶ This does not contradict the GNP analysis, since absolute value activation is

not monotonic.

However, experimental results shows that the certified ℓ∞ robustness of a
trained MaxMin networks is still poor.

Problems:
▶ Mismatch between theory and practice
▶ How about elementwise activations? (non-monotonic)
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Lipschitz Neural Networks and Boolean Functions
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Lipschitz Neural Networks and Boolean Functions

A New Perspective

The above GNP-based analysis has many limitations.

Instead, we consider a different perspective to study the expressive power of
Lipschitz neural networks w.r.t ℓ∞-norm, by focusing on Boolean functions.

Boolean function: gB : {0, 1}d → {0, 1}

Why Boolean functions?
▶ Boolean vectors correspond to the vertices of a d-dimensional hypercube, and

thus are geometrically related to the ℓ∞-distance metric.
▶ A Boolean dataset is always well-separated, as the ℓ∞-distance between any

two different data points is always 1.
▶ Therefore, the nearest neighbor classifier can achieve an optimal certified

radius of 1/2.
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Lipschitz Neural Networks and Boolean Functions

Can Standard Lipschitz Network Work on Boolean
Datasets?

We construct a class of counter examples using symmetric Boolean functions.

Definition
A Boolean function gB : {0, 1}d → {0, 1} is symmetric if it is invariant under
input permutation, i.e. gB(x1, · · · , xd) = gB(xπ(1), · · · , xπ(d)) for any x ∈ {0, 1}d

and π ∈ Sd.

Examples:
▶ Logical-AND, logical-OR, and Logical-XOR.

▶ Threshold functions: gB,k(x) = I

(∑
i

xi ≥ k
)

.
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Lipschitz Neural Networks and Boolean Functions

Impossibility Result for Standard Lipschitz Networks

Theorem
For any non-constant symmetric Boolean function gB : {0, 1}d → {0, 1}, there
exists a Boolean dataset with labels y(i) = gB(x(i)), such that no standard
Lipschitz network can achieve a certified ℓ∞ robust radius larger than 1/2d on the
dataset.

This theorem points out an intrinsic drawback of standard Lipschitz
networks, since the certified ℓ∞robust radius vanishes as dimension d grows.

Remarkably, it even fails on the most basic logical-AND/OR dataset.
▶ This explains the failure on simple MNIST dataset.
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Lipschitz Neural Networks and Boolean Functions

Lipschitz Function Approximation

The above theorem can be directly extended to the Lipschitz Function
Approximation setting, since Boolean dataset can be expressed by Lipschitz
functions, e.g. using nearest neighbor classifier.

A detailed and quantitative analysis:
▶ Consider the continuousization of discrete Boolean functions.
▶ For the symmetric case, one needs to find a class of 1-Lipschitz continuous

functions that are invariant under permutations.
▶ An important class of such functions are order statistics!
▶ The k-th order statistic x(k) is precisely the continuousization of the

k-threshold Boolean function.
▶ Special cases: x(1) = max

i
xi and x(d) = min

i
xi corresponds to the logical

OR/AND functions, respectively.
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Lipschitz Neural Networks and Boolean Functions

Impossibility Result

Theorem
Any standard Lipschitz network f : Rd → R cannot approximate the simple
1-Lipschitz function x → x(k) for arbitrary k ∈ [d] on a bounded domain
K = [0, 1]d if d ≥ 2. Moreover, there exists a point x̂ ∈ K, such that

|f(x̂)− x̂(k)| ≥
1

2
− 1

2d . (1)

Note that the trivial function f(x) = 1/2 already achieves an approximation
error of 1/2 uniformly on K, implying that standard Lipschitz networks can
hardly improve upon trivial solutions.
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Lipschitz Neural Networks and Boolean Functions

Discussion with the GNP Theory

We show GNP is not the most essential reason for the failure of standard
Lipschitz networks.

▶ Even if the activation function is GNP (e.g., the absolute value), the resulting
network still has limited expressive power.

▶ Instead, our results are systematic (hold for any activation function).

We draw a rather different understanding: the reason lies in the
norm-bounded affine transformations, which has limited expressive power (in
expressing Boolean functions).

Moreover, we give the first quantitative error bounds which is arbitrarily close
to a trivial solution, while the result of Anil et al. [2] is only qualitative.
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Lipschitz Neural Networks and Boolean Functions

Analysis of GroupSort Networks

Our theoretical insight readily gives a new understanding of how GroupSort
improves the expressive power: it explicitly calculates the order statistics!

A remark: GroupSort is strictly more expressive than the absolute value
activation for the ℓ∞ case, despite both of them are GNP and they are
equally expressive for the ℓ2 case.

What’s next?
▶ Is universal approximation already sufficient?
▶ Why do GroupSort networks perform poorly in practice?
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Lipschitz Neural Networks and Boolean Functions

Limitations of the MaxMin Networks

However, for the practically used MaxMin network, we give an intrinsic
limitation on its representational efficiency.

Firstly, we show that to approximate order-statistics, the required depth of a
MaxMin network must be at least Ω(log2 d).

Theorem
An M-layer MaxMin network f : Rd → R cannot approximate any k-th order
statistic function on a bounded domain K = [0, 1]d if M ≤ ⌈log2 d⌉ (no matter
how wide the network is). Moreover, there exists a point x̂ ∈ K, such that

|f(x̂)− x̂(k)| ≥
1

2
− 2M−2

d ≥ 1

4
if M ≤ ⌊log2 d⌋. (2)

Remark: this bound is tight (which can be proved using Boolean circuit
theory [1]).
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Lipschitz Neural Networks and Boolean Functions

What about General Boolean Functions?

We have a much stronger results for expressing hard Boolean functions using
MaxMin networks.

Theorem
Let Md be the minimum depth such that an Md-layer MaxMin network can
represent any (discrete) d-dimensional Boolean function. Then Md = Ω(d).

Remark: this bound is also tight.

The above theorem also implies that Lipschitz-universal approximation
theorem holds only when the depth is Ω(d).

Both theorems are in stark contrast to classic approximation theory, which
shows that a two-layer network suffices to approximate any continuous
function.
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Lipschitz Neural Networks and Boolean Functions

Another Limitation of GroupSort Networks

We find that when expressing Boolean functions, the weight matrices will
intrinsically be sparse, and the hidden neurons in all layers is Boolean-valued.

Theorem
Let D be a Boolean dataset that can be interpolated by a MaxMin network f.
Then there exists a network f̃ with the same architecture (i.e. depth and width) as
f, such that:

Denote W(l) ∈ Rdl×dl−1 as the weight matrix of the l-th layer of f̃. Then the
following holds for all i ∈ [dl]:

[W(l)]i,: ∈ {s · er : s ∈ {1,−1}, r ∈ [dl−1]} ∪ {0}. (3)

Denote f(l)i (x) as the i-th neuron output of the l-th layer given input x, and
denote S(l)

i = {f(l)i (x) : (x, y) ∈ D}. Then either |S(l)
i | = 1, or |S(l)

i | = 2 and
maxS(l)

i − minS(l)
i = 1.
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Lipschitz Neural Networks and Boolean Functions

The Surprising Equivalence to the 2-ary Boolean
Circuits

Due to the above theorem, the MaxMin network is actally equivalent to the
2-ary Boolean circuit

▶ An 2-ary Boolean circuit is a directed acyclic graph whose internal nodes are
logical gates including NOT and the 2-ary AND/OR.

This can be used to give an interesting proof of why MaxMin networks must
be very deep to express Boolean functions:

▶ Consider a 2-ary Boolean circuit of M layers. Its internal nodes must be no
more than 2M − 1, which is achieved by a complete Binary Tree.

▶ However, for certain hard Boolean functions of d variables, the size of the
Boolean circuit must be Ω(2d/d) according to [Shannon 1942].

▶ This already yields the conclusion that the depth must be Ω(d).
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Lipschitz Neural Networks and Boolean Functions

Several Discussions

Therefore, when fitting Boolean functions, the weight matrices simply
perform neuron-selection operations).

When considering all the learnable parameters, the biases plays a much more
important role than the weights.

The optimization procedure must finally learn sparse matrices, which yields
optimization difficulties.

Furthermore, since the network depth must be very deep, the optimization
becomes even harder.
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A New Understanding of ℓ∞-distance Nets

Principle in Designing Expressive Lipschitz Neural
Networks

An ℓ∞-distance neuron:

y = ∥x − w∥∞ + b = max
i

|xi − wi|+ b

It is based on three components: (1) bias; (2) max operation; (3) absolute
value.

Surprisingly, we find that the ℓ∞-distance net is precisely an architecture that
matches these design principles perfectly.
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A New Understanding of ℓ∞-distance Nets

ℓ∞-distance Nets and Boolean Circuits

As an intuition, note that a ℓ∞-distance neuron can express:
▶ the logical-OR of any dimension (due to the introduce of max operation);
▶ the logical-NOT (due to the introduce of absolute value).

Lemma
An ℓ∞-distance neuron with suitable parameters can exactly represent any literal
disjunction. Formally, for any Boolean function of the form

gB(x) = xi1 ∨ · · · ∨ xir ∨ ¬xj1 ∨ · · · ∨ ¬xjs ,

there exists a function f(x) = ∥x − w∥∞ + b such that f(x) = gB(x) ∀x ∈ {0, 1}d.
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ℓ∞-distance Nets and Boolean Circuits

Proof: Consider an ℓ∞-distance neuron f with parameters w, b defined as

wik = −1, k ∈ [r], wjk = 2, k ∈ [s], and wk = 1
2 for other k,

and b = −1. It is easy to see that
▶ When xik = 0 ∀k ∈ [r] and xjk = 1 ∀k ∈ [s],

f(x) = ∥x − w∥∞ + b

= max
(

max
k∈[r]

|xik − wik |,max
k∈[s]

|xjk − wjk |, max
k∈[d]/{i1,··· ,ir,j1,··· ,js}

|xk − wk|
)
− 1

= max
(
1, 1, max

k∈[d]/{i1,··· ,ir,j1,··· ,js}

∣∣∣∣xk −
1

2

∣∣∣∣)− 1 = 1− 1 = 0 = gB(x).

▶ When xik = 1 for some k ∈ [r], or xjk = 0 for some k ∈ [s], a similar calculation
yields f(x) = 2− 1 = 1 = gB(x).

This concludes the proof.
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A New Understanding of ℓ∞-distance Nets

ℓ∞-distance Nets and Boolean Circuits

Theorem
An two-layer ℓ∞-distance net can express any Boolean function.

Proof: We use the fundamental fact that any satisfiable Boolean function
can be written as a DNF gB(x) = ∨m

i=1gB
m(x) where gB

m(x) are literal
conjunctions.

▶ By the De Morgan’s law, any literal conjunction can be equivalently written as
the negative of a literal disjunction, i.e.

xi1 ∧ · · · ∧ xir ∧ ¬xj1 ∧ · · · ∧ ¬xjs = ¬(¬xi1 ∨ · · · ∨ ¬xir ∨ xj1 ∨ · · · ∨ xjs). (4)

▶ Therefore, we can write gB(x) = ∨m
i=1¬ĝB

i (x) where ĝB
i (x) := ¬gB

i (x) are all
disjunctive literals.

▶ Due to the above lemma, each ĝB
i (x) can be represented by an ℓ∞-distance

neuron that takes x as input, and gB(x) can be represented by an ℓ∞-distance
neuron that takes the vector (ĝB

1 (x), · · · , ĝB
m(x))T as input.

Remark: Different from GroupSort networks, the required depth is a constant
for ℓ∞-distance nets.
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A Unified Framework of Lipschitz Neural Networks
The above theoretical results have justified order statistics as a crucial
component.

On the other hand, ℓ∞-distance net is an architecture that only uses the first
order-statistics.

In this section, we consider a further generalization of ℓ∞-distance net to
directly incorporate all order statistics.

Definition (SortNet)
Define an M-layer fully-connected SortNet f as follows. The network takes
x = x(0) as input, and the k-th unit in the l-th hidden layer x(l)k is computed by

x(l)k = (w(l,k))T sort(σ(x(l−1) + b(l,k))), s.t. ∥w(l,k)∥1 ≤ 1, l ∈ [M], k ∈ [dl]
(5)

where dl is the size of the l-th layer, and sort(x) := (x(1), · · · , x(d))T calculates all
order statistics of x ∈ Rd. The network outputs f(x) = x(M) + bout. Here
{w(l,k)}, {b(l,k)} and bout are parameters.
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A Unified Framework of Lipschitz Neural Networks

Proposition
Any ℓ∞-distance net can be represented by a SortNet with the same topological
structure by fixing the weights w(l,k) = e1 and using the absolute-value activation
σ(x) = |x|.

Proposition
Any GroupSort network with an arbitrary group size on a compact input domain
can be represented by a SortNet with the same topological structure using
activation σ(x) = x.

What is the advantage of SortNet compared with GroupSort and ℓ∞-distance
nets?
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A Unified Framework of Lipschitz Neural Networks

A Practical Version

As with GroupSort networks, we also design a practical (specialized) version
of SortNet which enjoys efficient training.

Importantly, we still keep the full-dimensional order statistics as they are
crucial for the expressive power.

The key observation is that in the definition, the only required computation is
the linear combination of order statistics (i.e. wT sort(·)), rather than the
entire sorting results (i.e. sort(·)).

We find that for certain carefully designed choices of the weight vector w,
there exist efficient approximation algorithms that can give a good estimation
of wT sort(·).

In particular, we propose an assignment of the weight vector that follows
geometric series, i.e. wi proportional to ρi.
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A Unified Framework of Lipschitz Neural Networks

Proposition
Let w ∈ Rd be a vector satisfying wi = (1− ρ)ρi−1, i ∈ [d] for some 0 ≤ ρ < 1.
Then for any vector x ∈ Rd

+ with non-negative elements,

wT sort(x) = Es∼Ber(1-ρ)[max
i

sixi]. (6)

Here s is a random vector following independent Bernoulli distribution with
probability 1− ρ being 1 and ρ being 0.

Proof: Without loss of generality, assume x1, · · · , xd are different from each
other. Denote j1, · · · , jd as the sorting indices such that
sort(x) = (xj1 , · · · , xjd). Then

Es∼Ber(ρ)[maxi sixi] =
∑

k∈[d] Prs∼Ber(ρ) [maxi sixi = xjk ] xjk

=
∑

k∈[d] Prs∼Ber(ρ) [sjk = 1 and sji = 0 ∀1 ≤ i < k] xjk

=
∑

k∈[d](1− ρ)ρk−1 · x(k) = wT sort(x).
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A Unified Framework of Lipschitz Neural Networks

A Practical Version

The above proposition suggests that one can use max
i

sixi to give an
unbiased estimation of wT sort(x).

In this way, the expensive sorting operation is avoided and replaced by a max
operation, thus significantly reducing the computational cost in training.

Note that s is a random Bernoulli vector, so the above calculation is similar
to applying a mask on the input of each neuron, like dropout.

The introduced stochasticity may further prevent overfitting and benefit
generalization performance.

Bohang Zhang (Peking University) Expressive Power of Lipschitz Neural Networks December 15, 2022 39 / 43



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Unified Framework of Lipschitz Neural Networks

Experiments
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Experiments
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A Unified Framework of Lipschitz Neural Networks

Conclusion

We develop a unified analysis and novel understanding of the expressive
power of Lipschitz neural networks.

Promising directions:
▶ Beyond ℓ∞-norm
▶ Beyond stacking 1-Lipschitz layers

Our paper can be found at arxiv 2210.01787!
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Thank You!

Bohang Zhang (Peking University) Expressive Power of Lipschitz Neural Networks December 15, 2022 43 / 43


	Introduction
	Lipschitz Neural Networks and Gradient Preservation Problem
	Lipschitz Neural Networks and Boolean Functions
	A New Understanding of -distance Nets
	A Unified Framework of Lipschitz Neural Networks

