Beyond Weisfeiler-Lehman: A Quantitative Framework for GNN Expressiveness

Bohang Zhang*, Jingchu Gai*, Yiheng Du, Qiwei Ye, Di He, Liwei Wang

Peking University

July 21, 2024

(日) (四) (日) (日) (日)

2

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Index

2 Homomorphism Expressivity

Introduction

 Graph neural networks (GNNs) have become the dominant approach for learning graph-structured data.

< □ > < □ > < □ > < □ > < □ >

The Expressive Power of GNNs

• Are GNNs able to learn a general function on graphs?

Image: A math a math

The Expressive Power of GNNs

• Are GNNs able to learn a general function on graphs?

• No! Standard message-passing GNNs (MPNNs) cannot output different representations for the following two graphs.

イロト イヨト イヨト イ

Introduction

Central Question

How can we quantify & improve the expressive power of GNNs?

イロト イポト イヨト イヨト

How to Quantify & Improve the Expressive Power

- Prior approach 1: graph isomorphism
 - Standard MPNNs are as expressive as the 1-dimensional Weisfeiler-Lehman test in distinguishing non-isomorphic graphs [Morris et al., 2019, Xu et al., 2019].
 - Improvements: higher-order GNNs

< ロ > < 同 > < 回 > < 回 >

Introduction

How to Quantify & Improve the Expressive Power

- Prior approach 1: graph isomorphism
 - Standard MPNNs are as expressive as the 1-dimensional Weisfeiler-Lehman test in distinguishing non-isomorphic graphs [Morris et al., 2019, Xu et al., 2019].
 - Improvements: higher-order GNNs

- Drawbacks:
 - Not practical: severe computation/memory costs
 - Coarse and qualitative
 - Unclear about necessity for real-world tasks

< ロ > < 同 > < 回 > < 回 >

How to Quantify/Improve the Expressive Power

- Prior approach 2: substructure-based GNNs:
 - Standard MPNNs cannot encode structural information, such as counting cycles or cliques in a graph.
 - Method: preprocess substructures and use them to design more expressive GNNs.

• • • • • • • • • • • •

How to Quantify/Improve the Expressive Power

- Prior approach 2: substructure-based GNNs:
 - Standard MPNNs cannot encode structural information, such as counting cycles or cliques in a graph.
 - Method: preprocess substructures and use them to design more expressive GNNs.

• Drawbacks: Heuristic, not principled, only reflects restricted aspects of expressivity.

イロト イヨト イヨト イ

Introduction

Our Goal: A Universal Expressivity Framework

Can we develop a new framework to study the expressive power of GNNs in a quantitative, systematic, and practical way?

イロト イポト イヨト イヨト

Index

2

イロト イヨト イヨト イヨト

Our Idea

• What structural information can a GNN model "encode"?

2

イロト イヨト イヨト イヨト

Our Idea

- What structural information can a GNN model "encode"?
- Given a GNN model *M*, the family of substructures *M* can "encode", denoted as \mathcal{F}^M , can naturally be viewed as a measure of expressivity.

イロト イポト イヨト イヨト

Our Idea

- What structural information can a GNN model "encode"?
- Given a GNN model *M*, the family of substructures *M* can "encode", denoted as \mathcal{F}^M , can naturally be viewed as a measure of expressivity.
- By identifying \mathcal{F}^M for each model M, the expressive power of different models can be quantitatively compared via set inclusion relation and set difference.

イロト イポト イヨト イヨト

Key Idea

• How to define the notion of "encodability"?

Key Idea

- How to define the notion of "encodability"?
- We focus on a fundamental concept called homomorphism.
- Given two graphs F and G, a homomorphism from F to G is a mapping $f: V_F \to V_G$ that preserves local structures:
 - Vertex labels: $\ell_F(u) = \ell_G(f(u))$ for all $u \in V_F$.
 - Edge relations: $\{f(u), f(v)\} \in E_G$ for all $\{u, v\} \in E_F$;

(日) (四) (日) (日) (日)

Key Idea

- How to define the notion of "encodability"?
- We focus on a fundamental concept called homomorphism.
- Given two graphs F and G, a homomorphism from F to G is a mapping $f: V_F \to V_G$ that preserves local structures:
 - Vertex labels: $\ell_F(u) = \ell_G(f(u))$ for all $u \in V_F$.
 - Edge relations: $\{f(u), f(v)\} \in E_G$ for all $\{u, v\} \in E_F$;

• A GNN can encode substructure F in terms of homomorphism if for any input graph G, the computed graph representation of G can count the number of homomorphisms from F to G (denoted hom(F, G)).

Discussions with Subgraph Counting

• A homomorphism is called injective if it maps different vertices in *F* to different vertices in *G*.

イロト イヨト イヨト イ

Discussions with Subgraph Counting

• A homomorphism is called injective if it maps different vertices in *F* to different vertices in *G*.

- Injective homomorphism preserves full graph structures (corresponding to subgraph counting sub(F, G)).
- Why using homomorphism counting instead of subgraph counting?
 - Homomorphism counting is more fundamental.
 - It aligns more with GNNs: the aggregation in GNN layers only encodes local structure.

イロト イポト イヨト イヨト

Homomorphism Is Complete

Theorem [Lovász, 1967]

Any graph G can be uniquely determined (up to isomorphism) by the homomorphism counts hom(F, G) of all graphs F.

イロン イヨン イヨン イヨン

Homomorphism Is Complete

Theorem [Lovász, 1967]

Any graph G can be uniquely determined (up to isomorphism) by the homomorphism counts hom(F, G) of all graphs F.

- Question: can homomorphism count completely determine the graph representation for general GNNs?
- Conjecture: the graph representation of G computed by a GNN model can be determined by the homomorphism counts hom(F, G) of a smaller set of graphs F.

Formal Definition

• Given GNN model M and graph G, denote by $\chi^M_G(G)$ the graph representation of G computed by model M.

Definition (homomorphism expressivity)

The homomorphism expressivity of a GNN model M, denoted by \mathcal{F}^M , is a family of (labeled) graphs satisfying the following conditions:

- For any two graphs $G, H, \chi_G^M(G) = \chi_H^M(H)$ iff $\hom(F, G) = \hom(F, H)$ for all $F \in \mathcal{F}^M$;
- **②** \mathcal{F}^M is maximal, i.e., for any graph $F \notin \mathcal{F}^M$, there exists a pair of graphs G, H such that $\chi^M_G(G) = \chi^M_H(H)$ and hom $(F, G) \neq$ hom(F, H).
 - Remark: Due to the "iff" term, the existence of homomorphism expressivity is non-trivial for general GNNs.

Homomorphism Expressivity Is Complete and Quantitative

- Homomorphism expressivity is much finer than the WL hirarchy and more insightful than the graph isomorphism test:
 - ► Given two models M_1 and M_2 , $\mathcal{F}^{M_1} \subset \mathcal{F}^{M_2}$ \iff for any graphs $G, H, \chi_G^{M_2}(G) = \chi_H^{M_2}(H)$ implies $\chi_G^{M_1}(G) = \chi_H^{M_1}(H)$ $\iff M_2$ is more expressive than M_1 in distinguishing non-isomorphism graphs
 - *F*^{M₁} ⊆ *F*^{M₂} iff M₂ is strictly more expressive than M₁ in distinguishing non-isomorphism graphs.

- Let's begin with the simplest MPNN:
 - Maintain a color $\chi_G^{MP}(u)$ for each vertex $u \in V_G$;
 - ▶ Initially, the color depends on the vertex label, i.e., $\chi_G^{MP,(0)}(u) = \ell_G(u)$.
 - In each iteration:

$$\chi^{{\sf MP},(t+1)}_G(u) = {\sf hash}\left(\chi^{{\sf MP},(t)}_G(u), \{\!\!\{\chi^{{\sf MP},(t)}_G(v) : v \in N_G(u)\}\!\!\}\right).$$

- Denote by $\chi_G^{MP}(u)$ the stable color of u.
- Graph representation: $\chi_G^{MP}(G) = \{\!\!\{\chi_G^{MP}(u) : u \in V_G\}\!\!\}.$

• How can we derive the homomorphism expressivity for MPNNs?

(日)

- How can we derive the homomorphism expressivity for MPNNs?
- Intuition: the computed node feature of an MPNN can be fully determined by the structure of the unfolding tree.

• This shows $\chi_G^{MP}(u)$ contains $\hom(F^w, G^u)$ for all rooted trees F^w .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- This shows $\chi_G^{MP}(u)$ contains $\hom(F^w, G^u)$ for all rooted trees F^w .
- Since $\hom(F, G) = \sum_{u \in V_G} \hom(F^w, G^u)$, the graph representation $\chi_G^{\mathsf{MP}}(G)$ encodes $\hom(F, G)$ for all trees F.

<ロ> <四> <四> <四> <三</p>

- This shows $\chi_G^{MP}(u)$ contains $\hom(F^w, G^u)$ for all rooted trees F^w .
- Since $hom(F, G) = \sum_{u \in V_G} hom(F^w, G^u)$, the graph representation $\chi_G^{MP}(G)$ encodes hom(F, G) for all trees F.
- A more involved analysis can show the other two directions:
 - ▶ hom(F, G) for all trees F determines $\chi_G^{MP}(G)$ [Dvořák, 2010, Dell et al., 2018].
 - \mathcal{F}^{MP} does not contain any graph that contains cycles [Roberson, 2022].

Theorem

$$\mathcal{F}^{\mathsf{MP}} = \{F \colon F \text{ is a forest}\}.$$

More Advanced GNN Models

- Subgraph GNN [Qian et al., 2022, Bevilacqua et al., 2022]:
 - ▶ Treat a graph G as a set of subgraphs $\{\!\!\{G^u : u \in V_G\}\!\!\}$, each obtained from G by marking a special vertex $u \in V_G$.
 - Maintain a color $\chi_G^{\text{Sub}}(u, v)$ for each vertex v in graph G^u ;
 - Initially, $\chi_G^{\operatorname{Sub},(0)}(u,v) = (\ell_G(v), \mathbb{I}[u=v]);$
 - It then runs MPNNs independently on each graph G^{u} :

$$\chi_G^{\mathsf{Sub},(t+1)}(u,v) = \mathsf{hash}\left(\chi_G^{\mathsf{Sub},(t)}(u,v), \{\!\!\{\chi_G^{\mathsf{Sub},(t)}(u,w) : w \in N_G(v)\}\!\!\}\right).$$

- Denote by $\chi_G^{Sub}(u, v)$ the stable color of (u, v).
- ▶ Node feature of u: $\chi_G^{\mathsf{Sub}}(u) := \mathsf{hash}\left(\{\!\{\chi_G^{\mathsf{Sub}}(u, v) : v \in V_G\}\!\}\right);$
- Graph representation: $\chi_G^{\text{Sub}}(G) = \{\!\!\{\chi_G^{\text{Sub}}(u) : u \in V_G\}\!\!\}.$

More Advanced GNN Models

- Local 2-GNN [Morris et al., 2020]:
 - ► Initial color: $\chi_G^{\mathsf{L},(0)}(u,v) = (\ell_G(u), \ell_G(v), \mathbb{I}[u=v], \mathbb{I}[\{u,v\} \in E_G]);$
 - Aggregation rule:

- Folklore-type GNNs:
 - 2-FGNN [Maron et al., 2019]:

$$\chi_{G}^{\mathsf{F},(t+1)}(u,v) = \mathsf{hash}\left(\chi_{G}^{\mathsf{F},(t)}(u,v),\{\!\{(\chi_{G}^{\mathsf{F},(t)}(w,v),\chi_{G}^{\mathsf{F},(t)}(u,w)): w \in V_{G}\}\!\}\right).$$

Local 2-FGNN [Zhang et al., 2023]:

$$\begin{split} \chi_{G}^{\mathsf{LF},(t+1)}(u,v) \!=\! \mathsf{hash} \Big(\chi_{G}^{\mathsf{LF},(t)}(u,v), \\ & \left\{ \!\! \left\{ (\chi_{G}^{\mathsf{LF},(t)}(w,v), \chi_{G}^{\mathsf{LF},(t)}(u,w)) \! : \! w \! \in \! N_{G}(u) \! \cup \! N_{G}(v) \right\} \!\! \right\} \Big) \,. \end{split}$$

Unfolding Tree and Tree Decomposition

• In general, if a substructure F can be counted by a GNN model, F should admit a tree decomposition that aligns with the structure of the GNN's unfolding tree.

・ロト ・日 ・ ・ ヨト ・

Characterization using Nested Ear Decomposition

Definition

Given a graph G, a NED \mathcal{P} is a partition of the edge set E_G into a sequence of simple paths P_1, \dots, P_m (called ears), such that:

- Any two ears P_i and P_j (1 ≤ i < j ≤ c) do not intersect, where c is the number of connected components of G.
- For each ear P_j (j > c), there is an ear P_i (1 ≤ i < j) such that one or two endpoints of P_j lie in ear P_i (we say P_j is nested on P_i). Moreover, except for the endpoints lying in ear P_i, no other vertices in P_j are in any previous ear P_k for 1 ≤ k < j. If both endpoints of P_j lie in P_i, the subpath in P_i that shares the endpoints of P_j is called the *nested interval* of P_j in P_i, denoted as I(P_j) ⊂ P_i. If only one endpoint lies in P_i, define I(P_j) = Ø.
- For all ears P_j , P_k ($c < j < k \le m$), either $I(P_j) \cap I(P_k) = \emptyset$ or $I(P_j) \subset I(P_k)$.

イロン イヨン イヨン イヨン

2

Illustration

of NED

NED Variants

(a) Endpoint-shared/strong/almost-strong/general NED

- Endpoint-shared NED: a NED is called endpoint-shared if all ears with non-empty nested intervals share a common endpoint.
- Strong NED: a NED is called strong if for any two children P_j , P_k (j < k) nested on the same parent ear, we have $I(P_j) \subset I(P_k)$.
- Almost-strong NED: a NED is called almost-strong if for any children P_j , P_k (j < k) nested on the same parent ear and $|I(P_j)| > 1$, we have $I(P_j) \subset I(P_k)$.

(日) (四) (日) (日) (日)

Main Results

Theorem

For all GNN models M above, the graph family \mathcal{F}^M exists. Moreover, each \mathcal{F}^M can be separately described below:

- **MPNN**: $\mathcal{F}^{MP} = \{F : F \text{ is a forest}\};$
- Subgraph GNN: $\mathcal{F}^{Sub} = \{F : \exists u \in V_F \text{ s.t. } F \setminus \{u\} \text{ is a forest}\} = \{F : F \text{ has an endpoint-shared NED}\};$
- Local 2-GNN: $\mathcal{F}^{L} = \{F : F \text{ has a strong NED}\};$
- Local 2-FGNN: $\mathcal{F}^{LF} = \{F : F \text{ has an almost-strong NED}\};$
- **2-FGNN**: $\mathcal{F}^{\mathsf{F}} = \{F : F \text{ has a NED}\}.$
- Proofs are based on: (i) algebraic graph theory [Dell et al., 2018]; (ii) CFI construction [Cai et al., 1992, Fürer, 2001]; (iii) pebble game [Cai et al., 1992, Zhang et al., 2023].

Extending to Node/Edge-Level Expressivity

Definition

The node-level homomorphism expressivity of a GNN model M, denoted by \mathcal{F}_n^M , is a family of connected *rooted* graphs satisfying the following conditions:

- For any connected graphs G, H and vertices $u \in V_G$, $v \in V_H$, $\chi_G^M(u) = \chi_H^M(v)$ iff $\hom(F^w, G^u) = \hom(F^w, H^v)$ for all $F^w \in \mathcal{F}_n^M$;
- So For any connected rooted graph F^w ∉ F^M_n, there exists a pair of connected graphs G, H and vertices u ∈ V_G, v ∈ V_H such that χ^M_G(u) = χ^M_H(v) and hom(F^w, G^u) ≠ hom(F^w, H^v).

Extending to Node/Edge-Level Expressivity

Definition

The node-level homomorphism expressivity of a GNN model M, denoted by \mathcal{F}_n^M , is a family of connected *rooted* graphs satisfying the following conditions:

• For any connected graphs G, H and vertices $u \in V_G, v \in V_H$, $\chi_G^M(u) = \chi_H^M(v)$ iff $\hom(F^w, G^u) = \hom(F^w, H^v)$ for all $F^w \in \mathcal{F}_n^M$;

So For any connected rooted graph F^w ∉ F^M_n, there exists a pair of connected graphs G, H and vertices u ∈ V_G, v ∈ V_H such that χ^M_G(u) = χ^M_H(v) and hom(F^w, G^u) ≠ hom(F^w, H^v).

イロト 不得 トイヨト イヨト

July 21, 2024

26/33

• What about edge-level expressivity?

Extending to Node/Edge-Level Expressivity

Theorem

For all model M above, \mathcal{F}_n^M and \mathcal{F}_e^M (except MPNN) exist. Moreover,

- **MPNN**: $\mathcal{F}_{n}^{MP} = \{F^{w} : F \text{ is a tree}\};$
- Subgraph GNN: $\mathcal{F}_{n}^{Sub} = \{F^{w} : F \text{ has a NED with shared endpoint } w\} = \{F^{w} : F \setminus \{w\} \text{ is a forest}\},$ $\mathcal{F}_{e}^{Sub} = \{F^{wx} : F \text{ has a NED with shared endpoint } w\} = \{F^{wx} : F \setminus \{w\} \text{ is a forest}\};$
- 2-FGNN: \$\mathcal{F}_n^F\$ = {F^w : F has a NED where w is an endpoint of the first ear}, \$\mathcal{F}_e^F\$ = {F^{wx} : F has a NED where w and x are endpoints of the first ear}.

The cases of Local 2-GNN and Local 2-FGNN are similar to 2-FGNN by replacing "NED" with "strong NED" and "almost-strong NED", respectively.

Index

2 Homomorphism Expressivity

2

イロン イヨン イヨン イヨン

Quantitative Expressivity Comparison

- $\bullet\,$ Given two models M_1 and M_2
 - $\mathcal{F}^{M_1} \subset \mathcal{F}^{M_2}$

iff M_2 is more expressive than M_1 in distinguishing non-isomorphism graphs

• $\mathcal{F}^{M_1} \subsetneq \mathcal{F}^{M_2}$

iff ${\cal M}_2$ is strictly more expressive than ${\cal M}_1$ in distinguishing non-isomorphism graphs

Example

The expressive power of the following GNN models strictly increases in order (in terms of distinguishing non-isomorphic graphs): MPNN, Subgraph GNN, Local 2-GNN, Local 2-FGNN, and 2-FGNN. $\mathcal{F}^{MP} \subsetneq \mathcal{F}^{Sub} \subsetneq \mathcal{F}^{L} \subsetneq \mathcal{F}^{LF} \subsetneq \mathcal{F}^{F}$.

Image: A math a math

29/33

Subgraph Counting Power

• Denote by Spasm(F) the set of homomorphism images of F.

Theorem

For any GNN model M such that their homomorphism expressivity \mathcal{F}^M exists, M can subgraph-count F iff $\text{Spasm}(F) \subset \mathcal{F}^M$.

xample: Cycle/Path Cou	Cycle/Path Counting Power											
Structure		Cycle		Path								
Model	C_n	C_n^u	C_n^{uv}	P_n	P_n^w	P_n^{wx}						
MPNN	None	None	None	$n \leq 3$	$n \leq 3$	$n \leq 3$						
Subgraph GNN	$n \leq 7$	$n\!\leq\!4$	$n\!\leq\!4$	$n \leq 7$	$n\!\leq\!4$	$n\!\leq\!4$						
Local 2-GNN												
Local 2-FGNN		$n\!\leq\!7$			$n\!\leq\!7$							
2-FGNN												

More Extensions & Implications

- Homomorphism expressivity for higher-order GNNs
- Node/edge-level homomorphism expressivity and subgraph counting
- Related to polynomial expressivity [Puny et al., 2023]

イロト イポト イヨト イヨト

Experiments

Table 1: Experimental results on homomorphism counting. Red/blue nodes indicate marked vertices.

Task	Gra	aph-le	evel	Node	e-level	Edge-level			
Model	\square	\square	\bigotimes		\square	\mathbf{A}	\mathbf{A}	\mathbf{A}	
MPNN	.300	.233	.254	.505	.478	-	-	-	
Subgraph GNN	.011	.015	.012	.004	.058	.003	.058	.048	
Local 2-GNN	.008	.008	.010	.003	.004	.005	.006	.008	
Local 2-FGNN	.003	.005	.004	.005	.005	.007	.007	.008	

Table 2: Experimental results on ZINC and Alchemy datasets.

Task	ZII	Alchomy		
Model	Subset	Full	Alchemy	
MPNN	$.138 \pm .006$	$.030\pm.002$	$.122 \pm .002$	
Subgraph GNN	$.110 \pm .007$	$.028\pm.002$	$.116 \pm .001$	
Local 2-GNN	$.069 \pm .001$	$.024\pm.002$	$.114 \pm .001$	
Local 2-FGNN	$.064 \pm .002$	$.023\pm.001$	$.111 \pm .001$	

Table 3: Experimental results on the (Chordal) Cycle Counting task.

Task	Graph-level					Node-level						Edge-level						
Model	$ \Delta $	\Box	$\hat{\Omega}$	\bigcirc	\square	\triangle	\triangle	\Box	$\hat{\Omega}$	\bigcirc	\square	\triangle	$ \Delta $	\Box	$\hat{\Omega}$	\bigcirc	\square	$\mathbf{\hat{v}}$
MPNN	.358	.208	.188	.146	.261	.205	.600	.413	.300	.207	.318	.237	-	-	-	-	-	-
Subgraph GNN	.010	.020	.024	.046	.007	.027	.003	.005	.092	.082	.050	.073	.001	.003	.090	.096	.038	.065
Local 2-GNN	.008	.011	.017	.034	.007	.016	.002	.005	.010	.023	.004	.015	.001	.005	.010	.019	.005	.014
Local 2-FGNN	.003	.004	.010	.020	.003	.010	.004	.006	.012	.021	.004	.014	.003	.006	.012	.022	.005	.012

イロン イ団 とく ヨン イヨン

Conclusion

- We propose a new framework for systematically and quantitatively studying the expressive power of GNN architectures.
- Through the lens of homomorphism expressivity, we give exact descriptions of the graph family each model can encode in terms of homomorphism counting.
- Homomorphism expressivity framework stands as a valuable toolbox to unify the landscape between different subareas in the GNN community, providing deep insights into a number of prior works and answering their open problems.

Thank You!

2

イロト イヨト イヨト イヨト

References I

- Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation networks. In *International Conference on Learning Representations*, 2022.
- Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph identification. *Combinatorica*, 12(4):389–410, 1992.
- Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász meets weisfeiler and leman. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), volume 107, page 40. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.
- Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. *Journal* of Graph Theory, 64(4):330–342, 2010.
- Martin Fürer. Weisfeiler-lehman refinement requires at least a linear number of iterations. In *International Colloquium on Automata, Languages, and Programming*, pages 322–333. Springer, 2001.

э

References II

- László Lovász. Operations with structures. *Acta Mathematica Hungarica*, 18(3-4): 321–328, 1967.
- Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks. In *Advances in neural information processing systems*, volume 32, pages 2156–2167, 2019.
- Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pages 4602–4609, 2019.
- Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: towards scalable higher-order graph embeddings. In *Proceedings of the 34th International Conference on Neural Information Processing Systems*, pages 21824–21840, 2020.
- Omri Puny, Derek Lim, Bobak Kiani, Haggai Maron, and Yaron Lipman. Equivariant polynomials for graph neural networks. In *International Conference* on *Machine Learning*, pages 28191–28222. PMLR, 2023.

э

References III

- Chendi Qian, Gaurav Rattan, Floris Geerts, Christopher Morris, and Mathias Niepert. Ordered subgraph aggregation networks. *arXiv preprint arXiv:2206.11168*, 2022.
- David E Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of bounded degree. *arXiv preprint arXiv:2206.10321*, 2022.
- Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In *International Conference on Learning Representations*, 2019.
- Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness hierarchy for subgraph GNNs via subgraph weisfeiler-lehman tests. In *International Conference on Machine Learning*, volume 202, pages 41019–41077. PMLR, 2023.

э