Beyond Weisfeiler-Lehman: A Quantitative Framework for GNN Expressiveness

Bohang Zhang*, Jingchu Gai*, Yiheng Du, Qiwei Ye, Di He, Liwei Wang

Peking University

July 21, 2024

 Ω

K ロ ▶ | K 同 ▶ | K ヨ ▶

É

イロメ イ部メ イ君メ イ君メー

 299

Index

2 [Homomorphism Expressivity](#page-12-0)

Introduction

Graph neural networks (GNNs) have become the dominant approach for learning graph-structured data.

 Ω

イロト イ御 トイミトイ

The Expressive Power of GNNs

• Are GNNs able to learn a general function on graphs?

K ロ ト K 何 ト

 299

The Expressive Power of GNNs

• Are GNNs able to learn a general function on graphs?

No! Standard message-passing GNNs (MPNNs) cannot output different representations for the following two graphs.

 Ω

K ロ ▶ | K 同 ▶ | K ヨ ▶

[Introduction](#page-2-0)

Central Question

How can we quantify & improve the expressive power of GNNs?

 Ω

How to Quantify & Improve the Expressive Power

- Prior approach 1: graph isomorphism
	- \triangleright Standard MPNNs are as expressive as the 1-dimensional Weisfeiler-Lehman test in distinguishing non-isomorphic graphs [[Morris et al., 2019,](#page-48-0) [Xu et al.,](#page-49-0) [2019](#page-49-0)].
	- ▶ Improvements: higher-order GNNs

 Ω

How to Quantify & Improve the Expressive Power

- Prior approach 1: graph isomorphism
	- \triangleright Standard MPNNs are as expressive as the 1-dimensional Weisfeiler-Lehman test in distinguishing non-isomorphic graphs [[Morris et al., 2019,](#page-48-0) [Xu et al.,](#page-49-0) [2019](#page-49-0)].
	- ▶ Improvements: higher-order GNNs

- **o** Drawbacks:
	- \triangleright Not practical: severe computation/memory costs
	- \triangleright Coarse and qualitative
	- ▶ Unclear about *necessity* for real-world tasks

 Ω

How to Quantify/Improve the Expressive Power

- Prior approach 2: substructure-based GNNs:
	- ▶ Standard MPNNs cannot encode structural information, such as counting cycles or cliques in a graph.
	- ▶ Method: preprocess substructures and use them to design more expressive GNNs.

 Ω

K ロ ▶ K 何 ▶ K 手

How to Quantify/Improve the Expressive Power

- Prior approach 2: substructure-based GNNs:
	- ▶ Standard MPNNs cannot encode structural information, such as counting cycles or cliques in a graph.
	- ▶ Method: preprocess substructures and use them to design more expressive GNNs.

• Drawbacks: Heuristic, not principled, only reflects restricted aspects of expressivity.

 Ω

イロト イ押ト イヨト イ

[Introduction](#page-2-0)

Our Goal: A Universal Expressivity Framework

Can we develop a new framework to study the expressive power of GNNs in a quantitative, systematic, and practical way?

 Ω

K ロ ▶ K 何 ▶ K ヨ ▶ K

Index

É

 299

メロメ メ御 メメ きょく きょう

Our Idea

What structural information can a GNN model "encode"?

重

 299

メロメメ 御 メメ きょくきょう

Our Idea

- What structural information can a GNN model "encode"?
- Given a GNN model *M*, the family of substructures *M* can "encode", denoted as \mathcal{F}^M , can naturally be viewed as a measure of expressivity.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Our Idea

- What structural information can a GNN model "encode"?
- Given a GNN model *M*, the family of substructures *M* can "encode", denoted as \mathcal{F}^M , can naturally be viewed as a measure of expressivity.
- By identifying \mathcal{F}^M for each model M , the expressive power of different models can be quantitatively compared via set inclusion relation and set difference.

 Ω

 $\mathbf{A} \sqsubseteq \mathbf{A} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B}$

Key Idea

 \bullet How to define the notion of "encodability"?

重

 299

メロメメ 御 メメ きょくきょう

Key Idea

- How to define the notion of "encodability"?
- We focus on a fundamental concept called homomorphism.
- Given two graphs F and G , a homomorphism from F to G is a mapping *f* : $V_F \rightarrow V_G$ that preserves local structures:
	- ▶ Vertex labels: $\ell_F(u) = \ell_G(f(u))$ for all $u \in V_F$.
	- ▶ Edge relations: $\{f(u), f(v)\}$ ∈ E_G for all $\{u, v\}$ ∈ E_F ;

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Key Idea

- How to define the notion of "encodability"?
- We focus on a fundamental concept called homomorphism.
- Given two graphs F and G , a homomorphism from F to G is a mapping *f* : $V_F \rightarrow V_G$ that preserves local structures:
	- ▶ Vertex labels: $\ell_F(u) = \ell_G(f(u))$ for all $u \in V_F$.
	- ▶ Edge relations: $\{f(u), f(v)\}$ ∈ E_G for all $\{u, v\}$ ∈ E_F ;

 \bullet A GNN can encode substructure F in terms of homomorphism if for any input graph *G*, the computed graph representation of *G* can count the number of [ho](#page-19-0)[m](#page-15-0)omorphisms from *[F](#page-18-0)* to *[G](#page-11-0)* (denot[ed](#page-17-0) $hom(F, G)$ $hom(F, G)$ $hom(F, G)$ $hom(F, G)$ $hom(F, G)$ $hom(F, G)$)[.](#page-40-0) (□) () () (

Discussions with Subgraph Counting

A homomorphism is called injective if it maps different vertices in *F* to different vertices in *G*.

 Ω

K ロ ▶ | K 同 ▶ | K ヨ ▶

Discussions with Subgraph Counting

A homomorphism is called injective if it maps different vertices in *F* to different vertices in *G*.

- Injective homomorphism preserves full graph structures (corresponding to subgraph counting $sub(F, G)$).
- Why using homomorphism counting instead of subgraph counting?
	- ▶ Homomorphism counting is more fundamental.
	- ▶ It aligns more with GNNs: the aggregation in GNN layers only encodes local structure.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Homomorphism Is Complete

Theorem [\[Lovász, 1967\]](#page-48-1)

Any graph *G* can be uniquely determined (up to isomorphism) by the homomorphism counts hom(*F, G*) of all graphs *F*.

 Ω

メロトメ 倒 トメ ヨ トメ ヨ トー

Homomorphism Is Complete

Theorem [\[Lovász, 1967\]](#page-48-1)

Any graph *G* can be uniquely determined (up to isomorphism) by the homomorphism counts hom(*F, G*) of all graphs *F*.

- Question: can homomorphism count completely determine the graph representation for general GNNs?
- Conjecture: the graph representation of *G* computed by a GNN model can be determined by the homomorphism counts hom(*F, G*) of a smaller set of graphs *F*.

 Ω

Formal Definition

Given GNN model M and graph $\,G$, denote by $\chi_G^M(G)$ the graph representation of *G* computed by model *M*.

Definition (homomorphism expressivity)

The homomorphism expressivity of a GNN model M , denoted by \mathcal{F}^M , is a family of (labeled) graphs satisfying the following conditions:

- \bullet For any two graphs G,H , $\chi_{G}^{M}(G)=\chi_{H}^{M}(H)$ iff $\hom(F,G)=\hom(F,H)$ for all $F \in \mathcal{F}^M$:
- ² *F ^M* is maximal, i.e., for any graph *F ∈ F*/ *^M*, there exists a pair of graphs G, H such that $\chi_G^M(G) = \chi_H^M(H)$ and $hom(F, G) \neq hom(F, H)$.
- Remark: Due to the "iff" term, the existence of homomorphism expressivity is non-trivial for general GNNs.

 Ω

Homomorphism Expressivity Is Complete and Quantitative

- Homomorphism expressivity is much finer than the WL hirarchy and more insightful than the graph isomorphism test:
	- ▶ Given two models M_1 and M_2 , $\mathcal{F}^{M_1} \subset \mathcal{F}^{M_2}$ \iff for any graphs $G, H, \chi_G^{M_2}(G) = \chi_H^{M_2}(H)$ implies $\chi_G^{M_1}(G) = \chi_H^{M_1}(H)$ *⇐⇒ M*² is more expressive than *M*¹ in distinguishing non-isomorphism graphs
	- ▶ $\mathcal{F}^{M_1} \subsetneq \mathcal{F}^{M_2}$ iff M_2 is **strictly** more expressive than M_1 in distinguishing non-isomorphism graphs.

 Ω

K ロ > K 個 > K 경 > K 경 > X 경

- Let's begin with the simplest MPNN:
	- ▶ Maintain a color $\chi_G^{\sf MP}(u)$ for each vertex $u \in V_G$;
	- ▶ Initially, the color depends on the vertex label, i.e., $\chi_G^{{\sf MP},(0)}(u) = \ell_G(u)$.
	- \blacktriangleright In each iteration:

$$
\chi^{\mathsf{MP},(t+1)}_G(u) = \mathsf{hash}\left(\chi^{\mathsf{MP},(t)}_G(u), \{\mskip-5mu\{\chi^{\mathsf{MP},(t)}_G(v): v \in N_G(u)\}\mskip-5mu\}\right).
$$

- ▶ Denote by $\chi_G^{\sf MP}(u)$ the stable color of u .
- ▶ Graph representation: $\chi_G^{\sf MP}(G) = \{\!\chi_G^{\sf MP}(u) : u \in V_G\}\!\}.$

• How can we derive the homomorphism expressivity for MPNNs?

 Ω

- How can we derive the homomorphism expressivity for MPNNs?
- Intuition: the computed node feature of an MPNN can be fully determined by the structure of the unfolding tree.

This shows $\chi_G^{\sf MP}(u)$ contains $\hom(F^w,G^u)$ for all rooted trees $F^w.$

 2990

K ロ > K @ > K 경 > K 경 > 시 경

- This shows $\chi_G^{\sf MP}(u)$ contains $\hom(F^w,G^u)$ for all rooted trees $F^w.$
- $\textsf{Since } \hom(F, \, G) = \; \sum \; \hom(F^w, \, G^u), \, \textsf{the graph representation } \chi_G^{\sf MP}(G)$ $u ∈ V$ *G* encodes hom(*F, G*) for all trees *F*.

 QQQ

K ロ) K d) X (B) X (B) (B)

- This shows $\chi_G^{\sf MP}(u)$ contains $\hom(F^w,G^u)$ for all rooted trees $F^w.$
- $\textsf{Since } \hom(F, \, G) = \; \sum \; \hom(F^w, \, G^u), \, \textsf{the graph representation } \, \chi_G^{\sf MP}(G)$ *u∈VG* encodes hom(*F, G*) for all trees *F*.
- A more involved analysis can show the other two directions:
	- ▶ hom (F, G) for all trees F determines $\chi_G^{\mathsf{MP}}(G)$ [\[Dvořák, 2010,](#page-47-0) [Dell et al., 2018\]](#page-47-1).
	- \blacktriangleright $\mathcal{F}^{\mathsf{MP}}$ does not contain any graph that contains cycles [[Roberson, 2022\]](#page-49-1).

Theorem

$$
\mathcal{F}^{\mathsf{MP}} = \{F \colon F \text{ is a forest}\}.
$$

KED KAP KED KED E VAA

More Advanced GNN Models

- **Subgraph GNN** [\[Qian et al., 2022,](#page-49-2) [Bevilacqua et al., 2022](#page-47-2)]:
	- ▶ Treat a graph *G* as a set of subgraphs *{{G u* : *u ∈ VG}}*, each obtained from *G* by marking a special vertex $u \in V_G$.
	- ▶ Maintain a color $\chi^{\textsf{Sub}}_G(u,v)$ for each vertex v in graph $G^u;$
	- ▶ Initially, $\chi_G^{\text{Sub},(0)}(u,v) = (\ell_G(v), \mathbb{I}[u=v])$;
	- \blacktriangleright It then runs MPNNs independently on each graph G^u :

$$
\chi^{\text{Sub},(t+1)}_G(u,v)=\text{hash}\left(\chi^{\text{Sub},(t)}_G(u,v),\{\mskip-5mu\{\chi^{\text{Sub},(t)}_G(u,w):w\in N_G(v)\}\mskip-5mu\}\right).
$$

- ▶ Denote by $\chi_G^{\text{Sub}}(u, v)$ the stable color of (u, v) .
- ▶ Node feature of u : $\chi_G^{\textsf{Sub}}(u) := \textsf{hash}\left(\{\!\{\chi_G^{\textsf{Sub}}(u,v): v \in V_G\}\!\}\right)$;
- ▶ Graph representation: $\chi_G^{\text{Sub}}(G) = \{\!\chi_G^{\text{Sub}}(u) : u \in V_G\}\!\}.$

 Ω

More Advanced GNN Models

- Local 2-GNN [[Morris et al., 2020\]](#page-48-2):
	- ► Initial color: $\chi_G^{L,(0)}(u,v) = (\ell_G(u), \ell_G(v), \mathbb{I}[u = v], \mathbb{I}[\{u, v\} \in E_G]);$
	- ▶ Aggregation rule:

$$
\begin{aligned} \chi_G^{\mathsf{L},(t+1)}(u,v) = \mathsf{hash}\left(\chi_G^{\mathsf{L},(t)}(u,v), \{\mskip-5mu\{ \chi_G^{\mathsf{L},(t)}(w,v) \colon w \!\in\! N_G(u) \}\mskip-5mu\}, \\ \quad \ \ \{\mskip-5mu\{ \chi_G^{\mathsf{L},(t)}(u,w) \colon w \in N_G(v) \}\mskip-5mu\} \right). \end{aligned}
$$

- Folklore-type GNNs:
	- ▶ 2-FGNN [\[Maron et al., 2019](#page-48-3)]:

$$
\chi^{\mathsf{F},(t+1)}_G(u,v) = \mathsf{hash}\left(\chi^{\mathsf{F},(t)}_G(u,v), \{\!\!\{ (\chi^{\mathsf{F},(t)}_G(w,v), \chi^{\mathsf{F},(t)}_G(u,w)) : w \in \mathit{V}_G \}\!\!\} \right).
$$

▶ Local 2-FGNN [\[Zhang et al., 2023](#page-49-3)]:

$$
\chi_G^{\text{LF},(t+1)}(u,v) = \text{hash}\Big(\chi_G^{\text{LF},(t)}(u,v),
$$

$$
\{\!\!\{ (\chi_G^{\text{LF},(t)}(w,v), \chi_G^{\text{LF},(t)}(u,w))\colon w\!\in N_G(u)\cup N_G(v) \}\!\!\} \Big).
$$

Unfolding Tree and Tree Decomposition

In general, if a substructure *F* can be counted by a GNN model, *F* should admit a tree decomposition that aligns with the structure of the GNN's unfolding tree.

 Ω

Characterization using Nested Ear Decomposition

Definition

Given a graph *G*, a NED P is a partition of the edge set E_G into a *sequence* of simple paths P_1, \cdots, P_m (called ears), such that:

- Any two ears P_i and P_j $(1 \leq i < j \leq c)$ do not intersect, where c is the number of connected components of *G*.
- For each ear P_i ($i > c$), there is an ear P_i ($1 \le i \le j$) such that one or two endpoints of P_i lie in ear P_i (we say P_i is *nested* on *Pi*). Moreover, except for the endpoints lying in ear *Pi*, no other vertices in P_i are in any previous ear P_k for $1 \leq k \leq j$. If both endpoints of P_i lie in P_i , the subpath in P_i that shares the endpoints of P_i is called the *nested interval* of P_i in P_i , denoted as $I(P_j) \subset P_i$. If only one endpoint lies in P_i , define $I(P_i) = \emptyset$.
- \bullet For all ears P_j , P_k ($c < j < k \le m$), either $I(P_j) \cap I(P_k) = ∅$ or *I*(P_i) \subset *I*(P_k).

メロメ メ御 メメ ヨメ メヨメ

NED Variants

Endpoint-shared NED: a NED is called endpoint-shared if all ears with non-empty nested intervals share a common endpoint.

- Strong NED: a NED is called strong if for any two children $P_j, \ P_k \ (j < k)$ nested on the same parent ear, we have $I(P_i) \subset I(P_k)$.
- Almost-strong NED: a NED is called almost-strong if for any children *P^j* , *P^k* $(j < k)$ nested on the same parent ear and $|I(P_i)| > 1$, we have *I*(P_i) ⊂ *I*(P_k).

 Ω

Main Results

Theorem

For all GNN models M *above, the graph family* \mathcal{F}^M *exists. Moreover, each* \mathcal{F}^M *can be separately described below:*

- $MPNN$: $\mathcal{F}^{MP} = \{F : F \text{ is a forest}\}$;
- $\mathbf{Subgraph}$ \mathbf{GNN} : $\mathcal{F}^{\mathsf{Sub}} = \{F : \exists u \in V_F \text{ s.t. } F \setminus \{u\} \text{ is a forest}\} = \{F : \exists u \in V_F \text{ s.t. } F \setminus \{u\} \text{ is a forest}\}$ *F has an endpoint-shared NED};*
- *Local 2-GNN:* $\mathcal{F}^{\mathsf{L}} = \{F : F \text{ has a strong NED}\}\$
- *Local 2-FGNN:* $\mathcal{F}^{\mathsf{LF}} = \{F : F \text{ has an almost-strong NED}\}\$
- 2 -FGNN: $\mathcal{F}^{\mathsf{F}} = \{F : F \text{ has a NED}\}.$
- Proofs are based on: (i) algebraic graph theory \lceil Dell et al., 2018]; (ii) CFI construction [\[Cai et al., 1992](#page-47-3), [Fürer, 2001](#page-47-4)]; (iii) pebble game [\[Cai et al.,](#page-47-3) [1992,](#page-47-3) [Zhang et al., 2023\]](#page-49-3).

K ロ > K 個 > K 코 > K 코 > H 코

 209

Extending to Node/Edge-Level Expressivity

Definition

The node-level homomorphism expressivity of a GNN model M , denoted by \mathcal{F}^M_n , is a family of connected *rooted* graphs satisfying the following conditions:

1 For any connected graphs *G, H* and vertices $u \in V_G$, $v \in V_H$, $\chi_G^M(u)=\chi_H^M(v)$ iff $\hom(F^w,G^u)=\hom(F^w,H^v)$ for all $F^w\in \mathcal{F}^M_\mathsf{n};$

² For any connected rooted graph *F ^w ∈ F*/ *M* n , there exists a pair of connected g raphs G, H and vertices $u \in V_G, \ v \in V_H$ such that $\chi_G^M(u) = \chi_H^M(v)$ and $hom(F^w, G^u) \neq hom(F^w, H^v).$

 Ω

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Extending to Node/Edge-Level Expressivity

Definition

The node-level homomorphism expressivity of a GNN model M , denoted by \mathcal{F}^M_n , is a family of connected *rooted* graphs satisfying the following conditions:

1 For any connected graphs *G, H* and vertices $u \in V_G$, $v \in V_H$, $\chi_G^M(u)=\chi_H^M(v)$ iff $\hom(F^w,G^u)=\hom(F^w,H^v)$ for all $F^w\in \mathcal{F}^M_\mathsf{n};$

² For any connected rooted graph *F ^w ∈ F*/ *M* n , there exists a pair of connected g raphs G, H and vertices $u \in V_G, \ v \in V_H$ such that $\chi_G^M(u) = \chi_H^M(v)$ and $hom(F^w, G^u) \neq hom(F^w, H^v).$

K ロ ト K 伺 ト K ヨ ト K ヨ ト

 Ω

• What about edge-level expressivity?

Extending to Node/Edge-Level Expressivity

Theorem

For all model M *above,* \mathcal{F}^M_n *and* \mathcal{F}^M_e *(except MPNN) exist. Moreover,*

- $MPNN$: $\mathcal{F}_n^{MP} = \{F^w : F \text{ is a tree}\}$
- *Subgraph GNN:* $\mathcal{F}^{\mathsf{Sub}}_{\mathsf{n}} = \{ F^w : F \text{ has a NED with shared endpoint } w \} = \{ F^w :$ $F\setminus\{w\}$ *is a forest* $\}$ *,* $\mathcal{F}_{\mathsf{e}}^{\mathsf{Sub}} = \{F^{wx}\text{:}\allowbreak F \text{ has a NED with shared endpoint } w\} = \{F^{wx}\text{:}$ *F\{w} is a forest};*
- **2-FGNN**: $\mathcal{F}_n^{\mathsf{F}} = \{F^w : F \text{ has a NED where } w \text{ is an endpoint of the first ear}\},$ $\mathcal{F}_{\mathsf{e}}^{\mathsf{F}} = \{ F^{wx} : F \text{ has a NED where } w \text{ and } x \text{ are endpoints of the first ear} \}.$

The cases of Local 2-GNN and Local 2-FGNN are similar to 2-FGNN by replacing "NED" with "strong NED" and "almost-strong NED", respectively.

 QQ

K ロ) K d) X (B) X (B) (B)

Index

2 [Homomorphism Expressivity](#page-12-0)

重

 299

メロメ メ御 メメ きょく きょう

[Implications](#page-40-0)

Quantitative Expressivity Comparison

- \bullet Given two models M_1 and M_2
	- ▶ *F ^M*¹ *⊂ F^M*²

iff *M*² is more expressive than *M*¹ in distinguishing non-isomorphism graphs

 \blacktriangleright $\mathcal{F}^{M_1} \subsetneq \mathcal{F}^{M_2}$

iff M_2 is strictly more expressive than M_1 in distinguishing non-isomorphism graphs

Example

The expressive power of the following GNN models strictly increases in order (in terms of distinguishing non-isomorphic graphs): MPNN, Subgraph GNN, Local -GNN, Local 2-FGNN, and 2-FGNN. $\mathcal{F}^{\mathsf{MP}}\subsetneq\mathcal{F}^{\mathsf{Sub}}\subsetneq\mathcal{F}^{\mathsf{L}}\subsetneq\mathcal{F}^{\mathsf{L}\mathsf{F}}\subsetneq\mathcal{F}^{\mathsf{F}}.$

 Ω

Subgraph Counting Power

Denote by Spasm(*F*) the set of homomorphism images of *F*.

Theorem

For any GNN model *M* such that their homomorphism expressivity \mathcal{F}^M exists, M can subgraph-count *F* iff Spasm (F) ⊂ \mathcal{F}^M .

(a) $\textsf{Spasm}^{\mathcal{Z}}(C_6)$ has 10 graphs. (b) Rooted C_6

イロト イ押 トイヨ トイヨト

 Ω

More Extensions & Implications

- **Homomorphism expressivity for higher-order GNNs**
- Node/edge-level homomorphism expressivity and subgraph counting
- Related to polynomial expressivity [\[Puny et al., 2023](#page-48-4)]

イロト イ押 トイヨ トイヨ トー

 QQ

Experiments

Table 1: Experimental results on homomorphism counting. Red/blue nodes indicate marked vertices.

Table 2: Experimental results on ZINC and Alchemy datasets.

Table 3: Experimental results on the (Chordal) Cycle Counting task.

∍

 Ω

メロメ メ御 メメ きょく きょう

Conclusion

- We propose a new framework for systematically and quantitatively studying the expressive power of GNN architectures.
- Through the lens of homomorphism expressivity, we give exact descriptions of the graph family each model can encode in terms of homomorphism counting.
- Homomorphism expressivity framework stands as a valuable toolbox to unify the landscape between different subareas in the GNN community, providing deep insights into a number of prior works and answering their open problems.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Thank You!

É

 299

メロメ メ御 メメ ヨメ メヨメ

References I

- Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation networks. In *International Conference on Learning Representations*, 2022.
- Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph identification. *Combinatorica*, 12(4):389–410, 1992.
- Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász meets weisfeiler and leman. In *45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)*, volume 107, page 40. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.
- Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. *Journal of Graph Theory*, 64(4):330–342, 2010.
- Martin Fürer. Weisfeiler-lehman refinement requires at least a linear number of iterations. In *International Colloquium on Automata, Languages, and Programming*, pages 322–333. Springer, 2001.

 2990

References II

- László Lovász. Operations with structures. *Acta Mathematica Hungarica*, 18(3-4): 321–328, 1967.
- Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks. In *Advances in neural information processing systems*, volume 32, pages 2156–2167, 2019.
- Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pages 4602–4609, 2019.
- Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: towards scalable higher-order graph embeddings. In *Proceedings of the 34th International Conference on Neural Information Processing Systems*, pages 21824–21840, 2020.
- Omri Puny, Derek Lim, Bobak Kiani, Haggai Maron, and Yaron Lipman. Equivariant polynomials for graph neural networks. In *International Conference on Machine Learning*, pages 28191–28222. PMLR, 2023.

D-1 2990

メロメメ 御 メメ きょく ミメー

References III

- Chendi Qian, Gaurav Rattan, Floris Geerts, Christopher Morris, and Mathias Niepert. Ordered subgraph aggregation networks. *arXiv preprint arXiv:2206.11168*, 2022.
- David E Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of bounded degree. *arXiv preprint arXiv:2206.10321*, 2022.
- Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In *International Conference on Learning Representations*, 2019.
- Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness hierarchy for subgraph GNNs via subgraph weisfeiler-lehman tests. In *International Conference on Machine Learning*, volume 202, pages 41019–41077. PMLR, 2023.

 Ω

メロメメ 御 メメ きょくきょう