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Introduction

Introduction

Graph neural networks (GNNs) have become the dominant approach for
learning graph-structured data.
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Introduction

The Expressive Power of GNNs

Are GNNs able to learn a general function on graphs?

No! Standard message-passing GNNs (MPNNs) cannot output different
representations for the following two graphs.

Bohang Zhang (Peking University) July 21, 2024 5 / 33



Introduction

The Expressive Power of GNNs

Are GNNs able to learn a general function on graphs?

No! Standard message-passing GNNs (MPNNs) cannot output different
representations for the following two graphs.

Bohang Zhang (Peking University) July 21, 2024 5 / 33



Introduction

Central Question

How can we quantify & improve the expressive power of GNNs?
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Introduction

How to Quantify & Improve the Expressive Power

Prior approach 1: graph isomorphism
▶ Standard MPNNs are as expressive as the 1-dimensional Weisfeiler-Lehman

test in distinguishing non-isomorphic graphs [Morris et al., 2019, Xu et al.,
2019].

▶ Improvements: higher-order GNNs

Drawbacks:
▶ Not practical: severe computation/memory costs
▶ Coarse and qualitative
▶ Unclear about necessity for real-world tasks
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Introduction

How to Quantify/Improve the Expressive Power

Prior approach 2: substructure-based GNNs:
▶ Standard MPNNs cannot encode structural information, such as counting

cycles or cliques in a graph.
▶ Method: preprocess substructures and use them to design more expressive

GNNs.

Drawbacks: Heuristic, not principled, only reflects restricted aspects of
expressivity.
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Introduction

Our Goal: A Universal Expressivity Framework

Can we develop a new framework to study the expressive power of
GNNs in a quantitative, systematic, and practical way?
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Homomorphism Expressivity

Our Idea

What structural information can a GNN model “encode”?

Given a GNN model M, the family of substructures M can “encode”, denoted
as FM, can naturally be viewed as a measure of expressivity.

By identifying FM for each model M, the expressive power of different models
can be quantitatively compared via set inclusion relation and set difference.
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Homomorphism Expressivity

Key Idea

How to define the notion of “encodability”?

We focus on a fundamental concept called homomorphism.

Given two graphs F and G, a homomorphism from F to G is a mapping
f : VF → VG that preserves local structures:

▶ Vertex labels: ℓF(u) = ℓG(f(u)) for all u ∈ VF.
▶ Edge relations: {f(u), f(v)} ∈ EG for all {u, v} ∈ EF;
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A GNN can encode substructure F in terms of homomorphism if for any
input graph G, the computed graph representation of G can count the
number of homomorphisms from F to G (denoted hom(F,G)).
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Homomorphism Expressivity

Discussions with Subgraph Counting

A homomorphism is called injective if it maps different vertices in F to
different vertices in G.

3

1

2

4

3

1

2

4

𝐹𝐹 𝐺𝐺

31

𝐺𝐺

2/4

𝐺𝐺

1/3 2/4

3 7 7

Injective homomorphism preserves full graph structures (corresponding to
subgraph counting sub(F,G)).

Why using homomorphism counting instead of subgraph counting?
▶ Homomorphism counting is more fundamental.
▶ It aligns more with GNNs: the aggregation in GNN layers only encodes local

structure.
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Homomorphism Expressivity

Homomorphism Is Complete

Theorem [Lovász, 1967]
Any graph G can be uniquely determined (up to isomorphism) by the
homomorphism counts hom(F,G) of all graphs F.

Question: can homomorphism count completely determine the graph
representation for general GNNs?

Conjecture: the graph representation of G computed by a GNN model can be
determined by the homomorphism counts hom(F,G) of a smaller set of
graphs F.
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Homomorphism Expressivity

Formal Definition

Given GNN model M and graph G, denote by χM
G (G) the graph

representation of G computed by model M.

Definition (homomorphism expressivity)
The homomorphism expressivity of a GNN model M, denoted by FM, is a family
of (labeled) graphs satisfying the following conditions:

1 For any two graphs G,H, χM
G (G) = χM

H (H) iff hom(F,G) = hom(F,H) for
all F ∈ FM;

2 FM is maximal, i.e., for any graph F /∈ FM, there exists a pair of graphs
G,H such that χM

G (G) = χM
H (H) and hom(F,G) ̸= hom(F,H).

Remark: Due to the “iff” term, the existence of homomorphism expressivity
is non-trivial for general GNNs.
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Homomorphism Expressivity

Homomorphism Expressivity Is Complete and
Quantitative

Homomorphism expressivity is much finer than the WL hirarchy and more
insightful than the graph isomorphism test:

▶ Given two models M1 and M2, FM1 ⊂ FM2

⇐⇒ for any graphs G,H, χM2
G (G) = χM2

H (H) implies χM1
G (G) = χM1

H (H)
⇐⇒ M2 is more expressive than M1 in distinguishing non-isomorphism graphs

▶ FM1 ⊊ FM2 iff M2 is strictly more expressive than M1 in distinguishing
non-isomorphism graphs.
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Homomorphism Expressivity

Case Study: Message-passing GNNs

Let’s begin with the simplest MPNN:
▶ Maintain a color χMP

G (u) for each vertex u ∈ VG;
▶ Initially, the color depends on the vertex label, i.e., χMP,(0)

G (u) = ℓG(u).
▶ In each iteration:

χ
MP,(t+1)
G (u) = hash

(
χ

MP,(t)
G (u), {{χMP,(t)

G (v) : v ∈ NG(u)}}
)
.

▶ Denote by χMP
G (u) the stable color of u.

▶ Graph representation: χMP
G (G) = {{χMP

G (u) : u ∈ VG}}.

Bohang Zhang (Peking University) July 21, 2024 17 / 33



Homomorphism Expressivity

Case Study: Message-passing GNNs

How can we derive the homomorphism expressivity for MPNNs?

Intuition: the computed node feature of an MPNN can be fully determined
by the structure of the unfolding tree.
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Homomorphism Expressivity

Case Study: Message-passing GNNs

This shows χMP
G (u) contains hom(Fw,Gu) for all rooted trees Fw.

Since hom(F,G) =
∑

u∈VG

hom(Fw,Gu), the graph representation χMP
G (G)

encodes hom(F,G) for all trees F.

A more involved analysis can show the other two directions:
▶ hom(F,G) for all trees F determines χMP

G (G) [Dvořák, 2010, Dell et al., 2018].
▶ FMP does not contain any graph that contains cycles [Roberson, 2022].
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Homomorphism Expressivity
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∑

u∈VG

hom(Fw,Gu), the graph representation χMP
G (G)

encodes hom(F,G) for all trees F.

A more involved analysis can show the other two directions:
▶ hom(F,G) for all trees F determines χMP

G (G) [Dvořák, 2010, Dell et al., 2018].
▶ FMP does not contain any graph that contains cycles [Roberson, 2022].

Theorem
FMP = {F : F is a forest}.
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Homomorphism Expressivity

More Advanced GNN Models

Subgraph GNN [Qian et al., 2022, Bevilacqua et al., 2022]:
▶ Treat a graph G as a set of subgraphs {{Gu : u ∈ VG}}, each obtained from G

by marking a special vertex u ∈ VG.
▶ Maintain a color χSub

G (u, v) for each vertex v in graph Gu;
▶ Initially, χSub,(0)

G (u, v) = (ℓG(v), I[u = v]);
▶ It then runs MPNNs independently on each graph Gu:

χ
Sub,(t+1)
G (u, v) = hash

(
χ

Sub,(t)
G (u, v), {{χSub,(t)

G (u,w) : w ∈ NG(v)}}
)
.

▶ Denote by χSub
G (u, v) the stable color of (u, v).

▶ Node feature of u: χSub
G (u) := hash

(
{{χSub

G (u, v) : v ∈ VG}}
)

;

▶ Graph representation: χSub
G (G) = {{χSub

G (u) : u ∈ VG}}.
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Homomorphism Expressivity

More Advanced GNN Models
Local 2-GNN [Morris et al., 2020]:

▶ Initial color: χ
L,(0)
G (u, v) = (ℓG(u), ℓG(v), I[u = v], I[{u, v} ∈ EG]);

▶ Aggregation rule:

χ
L,(t+1)
G (u, v) = hash

(
χ

L,(t)
G (u, v), {{χL,(t)

G (w, v) :w∈NG(u)}},

{{χL,(t)
G (u,w) : w ∈NG(v)}}

)
.

Folklore-type GNNs:
▶ 2-FGNN [Maron et al., 2019]:

χ
F,(t+1)
G (u, v) = hash

(
χ

F,(t)
G (u, v), {{(χF,(t)

G (w, v), χF,(t)
G (u,w)) : w ∈ VG}}

)
.

▶ Local 2-FGNN [Zhang et al., 2023]:

χ
LF,(t+1)
G (u, v)=hash

(
χ

LF,(t)
G (u, v),

{{(χLF,(t)
G (w, v), χLF,(t)

G (u,w)) :w∈NG(u)∪NG(v)}}
)
.
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Homomorphism Expressivity

Unfolding Tree and Tree Decomposition

In general, if a substructure F can be counted by a GNN model, F should
admit a tree decomposition that aligns with the structure of the GNN’s
unfolding tree.
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Homomorphism Expressivity

Characterization using Nested Ear Decomposition

Definition
Given a graph G, a NED P is a partition of the edge set EG into a
sequence of simple paths P1, · · · ,Pm (called ears), such that:

Any two ears Pi and Pj (1 ≤ i < j ≤ c) do not intersect, where c
is the number of connected components of G.

For each ear Pj (j > c), there is an ear Pi (1 ≤ i < j) such that
one or two endpoints of Pj lie in ear Pi (we say Pj is nested on
Pi). Moreover, except for the endpoints lying in ear Pi, no other
vertices in Pj are in any previous ear Pk for 1 ≤ k < j. If both
endpoints of Pj lie in Pi, the subpath in Pi that shares the
endpoints of Pj is called the nested interval of Pj in Pi, denoted
as I(Pj) ⊂ Pi. If only one endpoint lies in Pi, define I(Pj) = ∅.

For all ears Pj, Pk (c < j < k ≤ m), either I(Pj) ∩ I(Pk) = ∅ or
I(Pj) ⊂ I(Pk).
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5 6

1

2

7

43

5 6

Illustration
of NED
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Homomorphism Expressivity

NED Variants
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(a) Endpoint-shared/strong/almost-strong/general NED

Endpoint-shared NED: a NED is called endpoint-shared if all ears with
non-empty nested intervals share a common endpoint.

Strong NED: a NED is called strong if for any two children Pj, Pk (j < k)
nested on the same parent ear, we have I(Pj) ⊂ I(Pk).

Almost-strong NED: a NED is called almost-strong if for any children Pj, Pk
(j < k) nested on the same parent ear and |I(Pj)| > 1 , we have
I(Pj) ⊂ I(Pk).

Bohang Zhang (Peking University) July 21, 2024 24 / 33



Homomorphism Expressivity

Main Results

Theorem
For all GNN models M above, the graph family FM exists. Moreover, each FM

can be separately described below:

MPNN: FMP = {F : F is a forest};
Subgraph GNN: FSub = {F : ∃u ∈ VF s.t. F\{u} is a forest} = {F :
F has an endpoint-shared NED};
Local 2-GNN: FL = {F : F has a strong NED};
Local 2-FGNN: FLF = {F : F has an almost-strong NED};
2-FGNN: FF = {F : F has a NED}.

Proofs are based on: (i) algebraic graph theory [Dell et al., 2018]; (ii) CFI
construction [Cai et al., 1992, Fürer, 2001]; (iii) pebble game [Cai et al.,
1992, Zhang et al., 2023].
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Homomorphism Expressivity

Extending to Node/Edge-Level Expressivity

Definition
The node-level homomorphism expressivity of a GNN model M, denoted by FM

n ,
is a family of connected rooted graphs satisfying the following conditions:

1 For any connected graphs G,H and vertices u ∈ VG, v ∈ VH,
χM

G (u) = χM
H (v) iff hom(Fw,Gu) = hom(Fw,Hv) for all Fw ∈ FM

n ;
2 For any connected rooted graph Fw /∈ FM

n , there exists a pair of connected
graphs G,H and vertices u ∈ VG, v ∈ VH such that χM

G (u) = χM
H (v) and

hom(Fw,Gu) ̸= hom(Fw,Hv).

What about edge-level expressivity?
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Homomorphism Expressivity

Extending to Node/Edge-Level Expressivity

Theorem
For all model M above, FM

n and FM
e (except MPNN) exist. Moreover,

MPNN: FMP
n = {Fw : F is a tree};

Subgraph GNN:
FSub

n = {Fw : F has a NED with shared endpoint w} = {Fw :
F\{w} is a forest},
FSub

e = {Fwx :F has a NED with shared endpoint w} = {Fwx :
F\{w} is a forest};
2-FGNN: FF

n = {Fw : F has a NED where w is an endpoint of the first ear},
FF

e = {Fwx : F has a NED where w and x are endpoints of the first ear}.
The cases of Local 2-GNN and Local 2-FGNN are similar to 2-FGNN by replacing
“NED” with “strong NED” and “almost-strong NED”, respectively.
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Implications

Quantitative Expressivity Comparison
Given two models M1 and M2

▶ FM1 ⊂ FM2

iff M2 is more expressive than M1 in distinguishing non-isomorphism graphs
▶ FM1 ⊊ FM2

iff M2 is strictly more expressive than M1 in distinguishing non-isomorphism
graphs

Example
The expressive power of the following GNN models strictly increases in order (in
terms of distinguishing non-isomorphic graphs): MPNN, Subgraph GNN, Local
2-GNN, Local 2-FGNN, and 2-FGNN. FMP ⊊ FSub ⊊ FL ⊊ FLF ⊊ FF.
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(a) Endpoint-shared/strong/almost-strong/general NED
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Implications

Subgraph Counting Power

Denote by Spasm(F) the set of homomorphism images of F.

Theorem
For any GNN model M such that
their homomorphism expressivity
FM exists, M can subgraph-count
F iff Spasm(F) ⊂ FM. (a) Spasm ̸≃(C6) has 10 graphs. (b) Rooted C6

Example: Cycle/Path Counting Power

Model
Structure Cycle Path

Cn Cu
n Cuv

n Pn Pw
n Pwx

n
MPNN None None None n≤3 n≤3 n≤3

Subgraph GNN n≤7 n≤4 n≤4 n≤7 n≤4 n≤4

Local 2-GNN
n≤7 n≤7Local 2-FGNN

2-FGNN

Bohang Zhang (Peking University) July 21, 2024 30 / 33



Implications

More Extensions & Implications

Homomorphism expressivity for higher-order GNNs

Node/edge-level homomorphism expressivity and subgraph counting

Related to polynomial expressivity [Puny et al., 2023]
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Implications

Experiments

Table 1: Experimental results on
homomorphism counting. Red/blue nodes
indicate marked vertices.

Model
Task Graph-level Node-level Edge-level

MPNN .300 .233 .254 .505 .478 - - -
Subgraph GNN .011 .015 .012 .004 .058 .003 .058 .048
Local 2-GNN .008 .008 .010 .003 .004 .005 .006 .008

Local 2-FGNN .003 .005 .004 .005 .005 .007 .007 .008

Table 2: Experimental results on ZINC
and Alchemy datasets.

Model
Task ZINC AlchemySubset Full

MPNN .138± .006 .030± .002 .122± .002
Subgraph GNN .110± .007 .028± .002 .116± .001
Local 2-GNN .069± .001 .024± .002 .114± .001
Local 2-FGNN .064± .002 .023± .001 .111± .001

Table 3: Experimental results on the (Chordal) Cycle Counting task.

Model
Task Graph-level Node-level Edge-level

MPNN .358 .208 .188 .146 .261 .205 .600 .413 .300 .207 .318 .237 - - - - - -
Subgraph GNN .010 .020 .024 .046 .007 .027 .003 .005 .092 .082 .050 .073 .001 .003 .090 .096 .038 .065
Local 2-GNN .008 .011 .017 .034 .007 .016 .002 .005 .010 .023 .004 .015 .001 .005 .010 .019 .005 .014

Local 2-FGNN .003 .004 .010 .020 .003 .010 .004 .006 .012 .021 .004 .014 .003 .006 .012 .022 .005 .012
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Implications

Conclusion

We propose a new framework for systematically and quantitatively studying
the expressive power of GNN architectures.

Through the lens of homomorphism expressivity, we give exact descriptions of
the graph family each model can encode in terms of homomorphism counting.

Homomorphism expressivity framework stands as a valuable toolbox to unify
the landscape between different subareas in the GNN community, providing
deep insights into a number of prior works and answering their open problems.
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Thank You!
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