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Introduction

Introduction

Graph neural networks (GNNs) have become the dominant approach for learning
graph-structured data.
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Introduction

The Expressive Power of GNNs

Are GNNs able to learn a general function on graphs?

A highly related condition: GNN should be able to distinguish topologically different
graphs.
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Introduction

Graph isomorphism

Graph isomorphism problem: Given two graphs G = (VG, EG) and H = (VH, EH),
determine if there is a bijective mapping f : VG → VH, such that {u, v} ∈ EG iff
{f(u), f(v)} ∈ EH.

Seminal work: Morris et al. [2019], Xu et al. [2019] first linked GNN expressivity to an
important algorithm called Weisfeiler-Lehman test [Weisfeiler and Leman, 1968].
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Introduction

MPNNs are at Most as Expressive as 1-WL

Whenever 1-WL fails to distinguish two non-isomorphic graphs, MPNNs also fail.

Failure cases:

It is a central problem to study how to design more expressive GNNs beyond the 1-WL
test.
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Introduction

Related Works

Higher-order GNNs [Morris et al., 2019, 2020, Maron et al., 2019, Geerts and Reutter,
2022]

Substructure-based GNNs [Bouritsas et al., 2022, Barceló et al., 2021, Bodnar et al.,
2021b,a]

Subgraph GNNs [Cotta et al., 2021, Zhang and Li, 2021, You et al., 2021, Bevilacqua
et al., 2022, Zhao et al., 2022, Qian et al., 2022, Frasca et al., 2022, Huang et al., 2023]

However, these methods suffer from at least one of the following drawbacks:

High computation/memory cost

Unclear what power they can systematically and provably gain.

Expressiveness justified by toy examples
Bohang Zhang (Peking University) June 12, 2023 6 / 24
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Introduction

Fundamental Questions

Can we develop a class of principled and convincing metrics beyond the WL hierarchy
that can

▶ formally measure the expressive power of different GNN families
▶ guide the design of provably better GNN architectures

Bohang Zhang (Peking University) June 12, 2023 7 / 24
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Biconnectivity

Graph Biconnectivity

A central property in graph theory

Key concepts:
▶ cut vertex
▶ cut edge
▶ biconnected components
▶ block cut tree

L

G

C

E

F

H

D

J

I

N

B

A

MK
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Biconnectivity

Concepts related to Biconnectivity

L

G

C

E

F

H

D

J

I

N

B

A

MK

{G}

{H}{A,B,C}

{J,K,L,M,N}

{D,E,F,I}

C

FD

J

{A,B,C}

{D,E,F,I}

{J,K,L} {J,M,N}

{F,G}

{F,H}

{I,J}

I

{C,D}

Cut vertices/edges can be regarded as “hubs” in a graph that link different subgraphs into
a whole.

The link between cut vertices/edges and biconnected components forms exactly a tree
structure, called the Block Cut-vertex Tree and Block Cut-edge Tree, respectively.

Bohang Zhang (Peking University) June 12, 2023 9 / 24
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Biconnectivity

Biconnectivity is Important for Both Theory and Practice

From a practical perspective:
▶ Chemical reactions are highly related to

edge-biconnectivity of molecule graphs.
▶ Social networks are related to vertex-biconnectivity.

From a theoretical perspective:
▶ Network flow and spanning tree.
▶ Planar graph isomorphism [Hopcroft and Tarjan,

1972].

Bohang Zhang (Peking University) June 12, 2023 10 / 24
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Biconnectivity

Biconnectivity Can be Efficiently Computed!

Linear-time algorithm exists for all biconnectivity problems by using Depth-first Search
[Tarjan, 1972].

▶ Identifying all cut vertices/edges;
▶ Finding all biconnected components;
▶ Building block cut trees.

Remark: the complexity is the same as an MPNN!

Bohang Zhang (Peking University) June 12, 2023 11 / 24
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Investigating Known GNNs Architectures via Graph Biconnectivity Problem Formulation

Problem Formulation

Three types of biconnectivity problems (with increasing difficulties):
▶ Distinguish whether a graph is vertex/edge-biconnected:

for any graphs G,H where G is vertex/edge-biconnected but H is not, their graph
representations are different.

▶ Identify cut vertices:
for any graphs G,H and nodes u ∈ VG, v ∈ VH where u is a cut vertex but v is not, their
node features are different.
Identify cut edges:
for any {u, v} ∈ EG and {w, x} ∈ EH where {u, v} is a cut edge but {w, x} is not, their edge
features are different.

▶ Distinguish block cut-vertex/edge trees:
for any graphs G,H satisfying BCVTree(G) ̸≃ BCVTree(H) (or
BCETree(G) ̸≃ BCETree(H)), their graph representations are different.

Bohang Zhang (Peking University) June 12, 2023 12 / 24
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Investigating Known GNNs Architectures via Graph Biconnectivity Failure Examples

Can 1-WL Solve Biconnectivity Problems?

(a) (b) (c) (d)

The answer is no. They cannot even solve the easiest problem: to distinguish whether a
graph is vertex/edge-biconnected!

Bohang Zhang (Peking University) June 12, 2023 13 / 24
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Investigating Known GNNs Architectures via Graph Biconnectivity Failure Examples

How about Advanced GNN Architectures?

We investigate three types of popular GNNs in prior works:
▶ Substructure-based GNNs [Bouritsas et al., 2022];
▶ Simplicial/Cullular GNNs [Bodnar et al., 2021b,a];
▶ Overlap Subgraph GNN [Wijesinghe and Wang, 2022];

Unfortunately, still, none of these GNNs can solve even the easiest biconnectivity task.

The only exception is a special subgraph GNN called ESAN [Bevilacqua et al., 2022].
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Generalized Distance Weisfeiler-Lehman Test

Our Motivation

Problem: Can we design a principled and efficient GNN framework with provable
expressiveness for biconnectivity?

Let us restart from the classic 1-WL. Why cannot it encode
biconnectivity?

We argue that a major weakness is that it is agnostic to
distance information between nodes, since each node can
only “see” its neighbors in aggregation.

Idea: incorporating distance into the aggregation procedure!

dis = 5

dis = 4

Bohang Zhang (Peking University) June 12, 2023 15 / 24
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Generalized Distance Weisfeiler-Lehman Test

Our Approach: GD-WL

Algorithm 1: The Genealized Distance Weisfeiler-Lehman Algorithm
Input : Graph G = (V, E), distance metric dG : V × V → R+

Output: Color mapping χG : V → C
1 Initialize: χ0

G(v) := c0 for all v ∈ V where c0 ∈ C is a fixed color
2 for t← 1 to T do
3 for each v ∈ V do
4 χt

G(v) := hash
(
{{(dG(v, u), χt−1

G (u)) : u ∈ V}}
)

5 Return: χT
G

Bohang Zhang (Peking University) June 12, 2023 16 / 24
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Generalized Distance Weisfeiler-Lehman Test

Special Case: SPD-WL

When choosing the shortest path distance dG = disG, we obtain SPD-WL.

It can be equivalently written as
χt+1

G (v) = hash
(
χt

G(v), {{χt
G(u) : u ∈ NG(v)}}, {{χt

G(u) : disG(v, u) = 2}},
· · · , {{χt

G(u) : disG(v, u) = n− 1}}, {{χt
G(u) : disG(v, u) =∞}}

)
.

It is strictly more powerful than 1-WL since it additionally aggregates the k-hop neighbors
for all k > 1.
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Generalized Distance Weisfeiler-Lehman Test

Special Case: SPD-WL

SPD-WL is fully expressive for edge-biconnectivity.

Theorem
Let G = (VG, EG) and H = (VH, EH) be two graphs, and let χG and χH be the corresponding
SPD-WL color mapping. Then the following holds:

For any two edges {w1,w2} ∈ EG and {x1, x2} ∈ EH, if
{{χG(w1), χG(w2)}} = {{χH(x1), χH(x2)}}, then {w1,w2} is a cut edge if and only if
{x1, x2} is a cut edge.
If {{χG(w) : w ∈ VG}} = {{χH(w) : w ∈ VH}}, then BCETree(G) ≃ BCETree(H).
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Generalized Distance Weisfeiler-Lehman Test

Discussions

However, SPD-WL cannot distinguish vertex-biconnectivity (see the
right figure).
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Generalized Distance Weisfeiler-Lehman Test

Another Special Case: RD-WL

Due to the generality of GD-WL, we can use arbitrary distance metrics.

Another basic metric in graph theory is the Resistance Distance (RD).
▶ disR

G(u, v): the effective resistance between u and v when treating G as an electrical network
where each edge corresponds to a resistance of one ohm.

Properties of RD:
▶ Valid metric: non-negative, semidefinite, symmetric, and

satisfies the triangular inequality.
▶ Similar to SPD, 0 ≤ disR

G(u, v) ≤ n− 1, and
disR

G(u, v) = disG(u, v) if G is a tree.
▶ RD is highly related to the graph Laplacian and can be

efficiently calculated.

𝑢𝑢 𝑣𝑣
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Another Special Case: RD-WL

Due to the generality of GD-WL, we can use arbitrary distance metrics.
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Generalized Distance Weisfeiler-Lehman Test

Another Special Case: RD-WL

Theorem
Let G = (VG, EG) and H = (VH, EH) be two graphs, and let χG and χH be the corresponding
RD-WL color mapping. Then the following holds:

For any two nodes w ∈ VG and x ∈ VH, if χG(w) = χH(x), then w is a cut vertex if and
only if x is a cut vertex.
If {{χG(w) : w ∈ VG}} = {{χH(w) : w ∈ VH}}, then BCVTree(G) ≃ BCVTree(H).

Therefore, RD-WL is fully expressive for vertex-biconnectivity.
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Generalized Distance Weisfeiler-Lehman Test

Another Special Case: RD-WL

Theorem
Let G = (VG, EG) and H = (VH, EH) be two graphs, and let χG and χH be the corresponding
RD-WL color mapping. Then the following holds:

For any two nodes w ∈ VG and x ∈ VH, if χG(w) = χH(x), then w is a cut vertex if and
only if x is a cut vertex.
If {{χG(w) : w ∈ VG}} = {{χH(w) : w ∈ VH}}, then BCVTree(G) ≃ BCVTree(H).

Therefore, RD-WL is fully expressive for vertex-biconnectivity.

Corollary
When using both SPD and RD (i.e., by setting dG(u, v) := (disG(u, v), disR

G(u, v))), the
corresponding GD-WL is fully expressive for both vertex-biconnectivity and edge-biconnectivity.
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Generalized Distance Weisfeiler-Lehman Test

Practical Implementation

GD-WL enjoys great simplicity and full parallelizability.

Graphormer-GD: (A Transformer-like architecture)

Yh =
[
ϕh
1(D)⊙ softmax

(
XWh

Q(XWh
K)

⊤ + ϕh
2(D)

)]
XWh

V

Computational cost: O(n2).

Theorem
When choosing proper functions ϕh

1 and ϕh
2 and using a sufficiently large number of heads and

layers, Graphormer-GD is as powerful as GD-WL.
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Generalized Distance Weisfeiler-Lehman Test

Detecting Cut Vertices/Edges

Accuracy on cut vertex (articulation point) and cut edge (bridge) detection tasks.

Model Cut Vertex
Detection

Cut Edge
Detection

GCN [Kipf and Welling, 2017] 51.5%±1.3% 62.4%±1.8%
GAT [Veličković et al., 2018] 52.0%±1.3% 62.8%±1.9%
GIN [Xu et al., 2019] 53.9%±1.7% 63.1%±2.2%
GSN [Bouritsas et al., 2022] 60.1%±1.9% 70.7%±2.1%
Graphormer [Ying et al., 2021] 76.4%±2.8% 84.5%±3.3%
Graphormer-GD (ours) 100% 100%
- w/o. Resistance Distance 83.3%±2.7% 100%

GD-WL achieves 100% accuracy on both tasks, which is consistent to our theory. In
contrast, prior GNNs fails on both tasks.
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Generalized Distance Weisfeiler-Lehman Test

ZINC Dataset
Method Model Time (s) Params Test MAE

ZINC-Subset ZINC-Full

MPNNs
GIN [Xu et al., 2019] 8.05 509,549 0.526±0.051 0.088±0.002
GraphSAGE [Hamilton et al., 2017] 6.02 505,341 0.398±0.002 0.126±0.003
GAT [Veličković et al., 2018] 8.28 531,345 0.384±0.007 0.111±0.002
GCN [Kipf and Welling, 2017] 5.85 505,079 0.367±0.011 0.113±0.002

Higher-order
GNNs

RingGNN [Chen et al., 2019] 178.03 527,283 0.353±0.019 -
3WLGNN [Maron et al., 2019] 179.35 507,603 0.303±0.068 -

Substructure-
based GNNs

GSN [Bouritsas et al., 2022] - ∼500k 0.101±0.010 -
CIN-Small [Bodnar et al., 2021a] - ∼100k 0.094±0.004 0.044±0.003

Subgraph
GNNs

NGNN [Zhang and Li, 2021] - ∼500k 0.111±0.003 0.029±0.001
DSS-GNN [Bevilacqua et al., 2022] - 445,709 0.097±0.006 -
GNN-AK [Zhao et al., 2022] - ∼500k 0.105±0.010 -
GNN-AK+ [Zhao et al., 2022] - ∼500k 0.091±0.011 -
SUN [Frasca et al., 2022] 15.04 526,489 0.083±0.003 -

Graph
Transformers

GT [Dwivedi and Bresson, 2021] - 588,929 0.226±0.014 -
SAN [Kreuzer et al., 2021] - 508,577 0.139±0.006 -
Graphormer [Ying et al., 2021] 12.26 489,321 0.122±0.006 0.052±0.005

GD-WL Graphormer-GD (ours) 12.52 502,793 0.081±0.009 0.025±0.004
Bohang Zhang (Peking University) June 12, 2023 24 / 24
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Thank You!

Bohang Zhang (Peking University) June 12, 2023 24 / 24



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generalized Distance Weisfeiler-Lehman Test

References I

Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks
with local graph parameters. In Advances in Neural Information Processing Systems,
volume 34, pages 25280–25293, 2021.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph
aggregation networks. In International Conference on Learning Representations, 2022.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montufar,
and Michael M. Bronstein. Weisfeiler and lehman go cellular: CW networks. In Advances in
Neural Information Processing Systems, volume 34, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio,
and Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial
networks. In International Conference on Machine Learning, pages 1026–1037. PMLR,
2021b.

Bohang Zhang (Peking University) June 12, 2023 24 / 24



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generalized Distance Weisfeiler-Lehman Test

References II

Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. Advances in neural information
processing systems, 32, 2019.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph
representations. In Advances in Neural Information Processing Systems, volume 34, pages
1713–1726, 2021.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
graphs. AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Bohang Zhang (Peking University) June 12, 2023 24 / 24



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generalized Distance Weisfeiler-Lehman Test

References III

Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding
and extending subgraph gnns by rethinking their symmetries. ArXiv, abs/2206.11140, 2022.

Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural
networks. In International Conference on Learning Representations, 2022.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, volume 30, pages 1025–1035, 2017.

John E Hopcroft and Robert Endre Tarjan. Isomorphism of planar graphs. In Complexity of
computer computations, pages 131–152. Springer, 1972.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting
power of graph neural networks with i$^2$-GNNs. In The Eleventh International Conference
on Learning Representations, 2023.

Bohang Zhang (Peking University) June 12, 2023 24 / 24



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generalized Distance Weisfeiler-Lehman Test

References IV

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information
Processing Systems, 34, 2021.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. In Advances in neural information processing systems, volume 32, pages
2156–2167, 2019.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33,
pages 4602–4609, 2019.

Bohang Zhang (Peking University) June 12, 2023 24 / 24



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generalized Distance Weisfeiler-Lehman Test

References V

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse:
towards scalable higher-order graph embeddings. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, pages 21824–21840, 2020.

Chendi Qian, Gaurav Rattan, Floris Geerts, Christopher Morris, and Mathias Niepert. Ordered
subgraph aggregation networks. arXiv preprint arXiv:2206.11168, 2022.

Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing, 1
(2):146–160, 1972.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning
Representations, 2018.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the
algebra which appears therein. NTI, Series, 2(9):12–16, 1968.

Bohang Zhang (Peking University) June 12, 2023 24 / 24



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generalized Distance Weisfeiler-Lehman Test

References VI

Asiri Wijesinghe and Qing Wang. A new perspective on” how graph neural networks go
beyond weisfeiler-lehman?”. In International Conference on Learning Representations, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances
in Neural Information Processing Systems, 34, 2021.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 10737–10745, 2021.

Muhan Zhang and Pan Li. Nested graph neural networks. In Advances in Neural Information
Processing Systems, volume 34, pages 15734–15747, 2021.

Bohang Zhang (Peking University) June 12, 2023 24 / 24



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generalized Distance Weisfeiler-Lehman Test

References VII

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
gnn with local structure awareness. In International Conference on Learning
Representations, 2022.

Bohang Zhang (Peking University) June 12, 2023 24 / 24


	Introduction
	Biconnectivity
	Investigating Known GNNs Architectures via Graph Biconnectivity
	Problem Formulation
	Failure Examples

	Generalized Distance Weisfeiler-Lehman Test
	References

